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Econometricians are typically interested in modeling the

dependence between a certain variable Y and explanatory

variables X . Standard linear regression estimates the

conditional expectation E(Y |X = x) assuming a linear in x form

by least squares. There are many reasons to be rather interested

in modelling conditional median (or other quantiles) rather than

conditional means, for instance quantiles are more robust to

outliers than means and the whole conditional quantile function

gives the whole conditional distribution not only its mean...

Many applications in economics: wage structure, program

evaluation, demand analysis, income inequality, finance, and

other areas (ecology, biometrics).
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Quantile regression as pioneered by Koenker and Bassett (1978)

provides a very convenient and powerful tool to estimate

conditional quantiles, assuming a linear form in the explanatory

variables. Quantile regression relies very much on convex

optimization (with an L1-criterion instead of quadratic

programming used for linear regression).

However, one strong limitation of the method is that Y should

be univariate (what is the median of a multivariate variable?).
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Aim of this talk:

• recall the standard univariate quantile regression approach,

relate it to problems of optimal transport (OT) type, clarify

the case where the conditional quantile is not linear in the

explanatory variables,

• extend the analysis to the multivariate case by means of

optimal transport arguments.
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Outline

➀ Classical quantile regression: old and new

• Quantiles, conditional quantiles

• Quantiles and polar factorizations,

• Specified and quasi specified quantile regression

• General case

➁ Multivariate quantile regression

• Multivariate quantiles

• Specified case

• General case and duality

• Quantile regression as optimality conditions
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Quantiles, conditional quantiles

Let (Ω,F ,P) be some nonatomic probability space and Y be

some (univariate) random variable defined on this space.

Denoting by FY the distribution function of Y :

FY (α) := P(Y ≤ α), ∀α ∈ R

the quantile function of Y , QY = F−1
Y is the generalized inverse

of FY given by:

QY (t) := inf{α ∈ R : FY (α) > t} for all t ∈ (0, 1). (1)

Classical quantile regression: old and new/1
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Two well-known facts about quantiles:

• α = QY (t) is a solution of the convex minimization problem

min
α

{E((Y − α)+) + α(1− t)} (2)

• there exists a uniformly distributed random variable U such

that Y = QY (U) (polar factorization). Moreover, among

uniformly distributed random variables, U is maximally

correlated to Y in the sense that it solves

max{E(V Y ), Law(V ) = µ} (3)

where µ := uniform([0, 1]) is the uniform measure on [0, 1].

Classical quantile regression: old and new/2
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gives two different approaches to study or estimate quantiles:

• the local or "t by t" approach which consists, for a fixed

probability level t, in using directly formula (1) or the

minimization problem (2), this can be done very efficiently

in practice but has the disadvantage of forgetting the

fundamental global property of the quantile function: it

should be monotone in t,

• the global approach (or polar factorization approach), where

quantiles of Y are defined as all nondecreasing functions Q

for which on one can write Y = Q(U) with U uniformly

distributed; in this approach, one rather tries to recover

directly the whole monotone function Q (or the uniform

variable U that is maximally correlated to Y ), in this global

approach, one should rather use the OT problem (3).

Classical quantile regression: old and new/3
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Conditional quantiles Assume now that, in addition to the

random variable Y , we are also given a random vector X ∈ R
N

which we may think of as being a list of explanatory variables

for Y . We are therefore interested in the dependence between Y

and X and in particular the conditional quantiles. In the sequel

we shall denote by ν the joint law of (X, Y ), ν := Law(X, Y )

and assume that ν is compactly supported on R
N+1 (i.e. X and

Y are bounded). We shall also denote by m the first marginal of

ν i.e. m := ΠX#ν = Law(X). We shall denote by F (x, y) the

conditional cdf:

F (x, y) := P(Y ≤ y|X = x)

and Q(x, t) the conditional quantile

Q(x, t) := inf{α ∈ R : F (x, α) > t}.

Classical quantile regression: old and new/4



Quantiles, conditional quantiles 10

For the sake of simplicity we shall also assume that:

• for m-a.e. x, t 7→ Q(x, t) is continuous and increasing (so

that for m-a.e. x, identities Q(x, F (x, y)) = y and

F (x,Q(x, t)) = t hold for every y and every t)

• the law of (X, Y ) does not charge nonvertical hyperplanes

i.e. for every (α, β) ∈ R
1+N , P(Y = α+ β ·X) = 0.

Finally we denote by νx the conditional probability of Y given

X = x so that ν = m⊗ νx.

Classical quantile regression: old and new/5
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Quantiles and polar factorizations

Let us define the random variable U := F (X, Y ), then by

construction:

P(U < t|X = x) = P(F (x, Y ) < t|X = x) = P(Y < Q(x, t)|X = x)

= F (x,Q(x, t)) = t.

From this elementary observation we deduce that

• U is independent from X (since its conditional cdf does not

depend on x),

• U is uniformly distributed,

• Y = Q(X,U) where Q(x, .) is increasing.

Classical quantile regression: old and new/6
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This easy remark leads to a conditional polar factorization of Y

with an independence condition between U and X . There is a

variational principle behind this conditional decomposition.

Recall that we have denoted by µ the uniform measure on [0, 1].

Let us consider the variant of the optimal transport problem (3)

where one further requires U to be independent from the vector

of regressors X :

max{E(V Y ), Law(V ) = µ, V ⊥⊥ X}. (4)

which in terms of joint law θ = Law(X, Y, U) can be written as

max
θ∈I(ν,µ)

∫

u · y θ(dx, dy, du) (5)

where I(µ, ν) consists of probability measures θ on

R
N+1 × [0, 1] such that the (X, Y ) marginal of θ is ν and the

(X,U) marginal of θ is m⊗ µ.

Classical quantile regression: old and new/7
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In the previous conditional polar factorization, it is very

demanding to ask that U is independent from the regressors X ,

but the function Q(X, .) is just monotone nondecreasing, its

dependence in x is arbitrary. In practice, the econometrician

rather looks for a specific form of Q (linear in X for instance),

which by duality will amount to relaxing the independence

constraint. We shall develop this idea in details next and relate

it to classical quantile regression.
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Specified and quasi specified quantile regression 14

Specified and quasi specified quantile regression

From now, on we normalize X to be centered i.e. assume (and

this is without loss of generality) that

E(X) = 0.

We also assume that m := Law(X) is nondegenerate in the

sense that its support contains some ball centered at E(X) = 0.

Since the seminal work of Koenker and Bassett, it has been

widely been accepted that a convenient way to estimate

conditional quantiles is to stipulate an affine form with respect

to x for the conditional quantile.

Classical quantile regression: old and new/9
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Since a quantile function should be monotone in its second

argument, this leads to the following definition

Definition 1 Quantile regression is specified if there exist

(α, β) ∈ C([0, 1],R)× C([0, 1],RN) such that for m-a.e. x

t 7→ α(t) + β(t) · x is increasing on [0, 1] (6)

and

Q(x, t) = α(t) + x · β(t). (7)

for m-a.e. x and every t ∈ [0, 1]. If (6)-(7) hold, quantile

regression is specified with regression coefficients (α, β).

Classical quantile regression: old and new/10
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Specification of quantile regression can be characterized by

Proposition 1 Let (α, β) be continuous and satisfy (6).

Quantile regression is specified with regression coefficients (α, β)

if and only if there exists U such that

Y = α(U) +X · β(U) a.s., Law(U) = µ, U ⊥⊥ X. (8)

Interpretation: linear model with a random factor independent

from the explanatory variables.

Classical quantile regression: old and new/11
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Koenker and Bassett showed that, for a fixed probability level t,

the regression coefficients (α, β) can be estimated by quantile

regression i.e. the minimization problem

inf
(α,β)∈R1+N

E(ρt(Y − α− β ·X)) (9)

where the penaltya ρt is given by ρt(z) := tz− + (1− t)z+ with

z− and z+ denoting as usual the negative and positive parts of

z. For further use, note that (9) can be conveniently be

rewritten as

inf
(α,β)∈R1+N

{E((Y − α− β ·X)+) + (1− t)α}. (10)

aIt is worth noting here the difference with ordinary least squares

(quadratic penalty) for the estimation of conditional expectations.
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As already noticed by Koenker and Bassett, this convex

program admits as dual formulation

sup{E(UtY )) : Ut ∈ [0, 1], E(Ut) = (1− t), E(UtX) = 0} (11)

An optimal (α, β) for (10) and an optimal Ut in (11) are related

by the complementary slackness condition:

Y > α+ β ·X ⇒ Ut = 1, and Y < α+ β ·X ⇒ Ut = 0. (12)

Note that α appears naturally as a Lagrange multiplier

associated to the constraint E(Ut) = (1− t) and β as a Lagrange

multiplier associated to E(UtX) = 0. Since ν = Law(X, Y )

gives zero mass to nonvertical hyperplanes, we may simply write

Ut = 1{Y >α+β·X}. (13)

Classical quantile regression: old and new/13
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The constraints E(Ut) = (1− t), E(XUt) = 0 then read

E(1{Y >α+β·X}) = P(Y > α+β·X) = (1−t), E(X1{Y >α+β·X}) = 0

(14)

which simply are the first-order conditions for (10).

Any pair (α, β) which solvesa the optimality conditions (14) for

the Koenker and Bassett approach will be denoted

α = αQR(t), β = βQR(t)

and the variable Ut solving (11) given by (13) will similarly be

denoted UQRt

U
QR
t := 1{Y >αQR(t)+βQR(t)·X}. (15)

aUniqueness will be discussed later on

Classical quantile regression: old and new/14
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Note that in the previous considerations the probability level t

is fixed, this is what we called the "t by t" approach. For this

approach to be consistent with conditional quantile estimation,

if we allow t to vary we should add an additional monotonicity

requirement:

Definition 2 Quantile regression is quasi-specified if there

exists for each t, a solution (αQR(t), βQR(t)) of (14)

(equivalently the minimization problem (9)) such that

t ∈ [0, 1] 7→ (αQR(t), βQR(t)) is continuous and, for m-a.e. x

t 7→ αQR(t) + βQR(t) · x is increasing on [0, 1]. (16)

Classical quantile regression: old and new/15
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A first consequence of quasi-specification is given by

Proposition 2 If quantile regression is quasi-specified and if

we define UQR :=
∫ 1

0
U
QR
t dt (recall that UQRt is given by (15))

then:

• UQR is uniformly distributed,

• X is mean-independent from UQR i.e.

E(X |UQR) = E(X) = 0,

• Y = αQR(UQR) + βQR(UQR) ·X a.s.

Moreover UQR solves the correlation maximization problem with

a mean-independence constraint:

max{E(V Y ), Law(V ) = µ, E(X |V ) = 0}. (17)

Classical quantile regression: old and new/16
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One has uniqueness for the mean-independent conditional polar

factorization in proposition 2:

Proposition 3 Let us assume that

Y = α(U) + β(U) ·X = α(U) + β(U) ·X

with:

• both U and U uniformly distributed,

• X is mean-independent from U and U :

E(X |U) = E(X |U) = 0,

• α, β, α, β are continuous on [0, 1],

• (α, β) and (α, β) satisfy the monotonicity condition (6),

then

α = α, β = β, U = U.

Classical quantile regression: old and new/17
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To sum up, we have shown that quasi-specification is equivalent

to the validity of the linear factor model:

Y = α(U) + β(U) ·X

for (α, β) continuous and satisfying the monotonicity condition

(6) and U , uniformly distributed and mean-independent from

X . In the specified case, U is independent from X . In the

general case, the conditional polar factorization gives

Y = Q(X,U) where U is required to be independent from X

but the dependence of Y with respect to U , given X , is given by

any nondecreasing function of U .

Classical quantile regression: old and new/18
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General case

Now we wish to address quantile regression in the case where

neither specification nor quasi-specification can be taken for

granted. From what we saw, we can think of two natural

approaches.

The first one consists in studying directly the correlation

maximization with a mean-independence constraint (17):

max{E(V Y ), Law(V ) = µ, E(X |V ) = 0}. (18)

Classical quantile regression: old and new/19
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The second one consists in getting back to the Koenker and

Bassett t by t problem (11) but adding as an additional global

consistency constraint that Ut should be nonincreasing with

respect to t:

supE(

∫ 1

0

UtY dt)

subject to:

Ut nonincreasing, Ut ∈ [0, 1], E(Ut) = (1− t), E(UtX) = 0.

(19)

Classical quantile regression: old and new/20



General case 26

In fact, these two approaches are equivalent (they have the same

dual in fact). Let us remark that (17) can directly be considered

in the multivariate case whereas the monotonicity constrained

problem (19) makes sense only in the univariate case.

Classical quantile regression: old and new/21
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Multivariate quantiles

We now consider the case where the endogenous Y variable

belongs to R
d. The idea then is to define the multivariate

quantile of Y as Brenier’s map. Set µ := uniform([0, 1]d) and

consider the correlation maximization problem

max{E(V · Y ), Law(V ) = µ} (20)

i.e. the quadratic optimal transport problem

inf

∫

Rd×Rd

|u− y|2γ(du, dy) γ ∈ Π(µ,Law(Y )).

Multivariate quantile regression/1
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Brenier’s theorem says that if Y is a squared-integrable

d-dimensional random variable, there is a unique map of the

form T = ∇ϕ with ϕ convex on [0, 1]d such that

∇ϕ#µ = Law(Y ). This map is the optimal transport from the

uniform law to Law(Y ).

By definition, we call this map the quantile function of Y .

Polar factorization

Y = ∇ϕ(U), ϕ convex , U uniform.

Multivariate quantile regression/2
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Conditional quantile

Now, take a N -dimensional random vector X of regressors,

ν := Law(X, Y ), m := Law(X), ν = m⊗ νx where νx is the law

of Y given X = x. One can consider Q(x, u) = ∇ϕ(x, u) as the

optimal transport between µ and νx. Q(x, .) is then the

conditional multivariate quantile of Y given X = x.

Multivariate quantile regression/3
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Under some regularity assumptions on νx, one can invert

Q(x, .): Q(x, .)−1 = ∇yϕ(x, .)
∗ (where the Legendre transform

is taken for fixed x) and one can define U through

U = ∇yϕ
∗(X, Y ), Y = Q(X,U) = ∇uϕ(X,U).

As in the unidimensional case, this U is uniformly distributed,

independent from X and solves:

max{E(V · Y ), Law(V ) = µ, V ⊥⊥ X}. (21)

Note that the additional mean-independence constraint looks a

little bit like the martingale constraint of

Henry-Labordère-Galichon-Touzi.

Multivariate quantile regression/4



Specified case 31

Specified case

If the conditional quantile function is affine in X (specified

case), then Y = Q(X,U) = α(U) + β(U)X where U is uniform

and independent from X , the function u 7→ α(u) + β(u)x should

be the gradient of some function of u which requires

α = ∇ϕ, β = DbT

for some potential ϕ and some vector-valued function b in which

case, Q(x, .) is the gradient of u 7→ ϕ(u) + b(u) · x. Moreover,

since quantiles are gradients of convex potentials one should

also have

u ∈ [0, 1]d 7→ ϕ(u) + b(u) · x is convex .

Multivariate quantile regression/5
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As in the unidimensional case, one can weaken the specification

assumption: quasi-specification holds when

Y = ∇ϕ(U) +DbT (U)X , with U mean independent from X and

u ∈ [0, 1]d 7→ Φx(u) := ϕ(u) + b(u) · x is convex .

In such as case, U solves:

max{E(V · Y ), Law(V ) = µ, E(X |V ) = 0}. (22)

Indeed, Y = ∇ΦX(U) hence UY = ϕ(U) + b(U) ·X +Φ∗
X(Y ),

integrating and using the fact that U is mean independent from

X then gives

E(UY ) = E(ϕ(U)) +E(Φ∗
X(Y ))

and similarly for V uniform and such that E(X |V ) = 0 one has

E(V Y ) ≤ E(ϕ(V )) +E(Φ∗
X(Y )).
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General case and duality

We now consider the general case where quasi-specification does

not necessarily hold. What does the optimal problem with a

mean-independence condition

max{E(V · Y ), Law(V ) = µ, E(X |V ) = 0}.

say about the depedence between X and Y ? Regression

interpretation?

As usual, a good starting point is duality.
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Formal derivation of the dual. Recall notations

µ = uniform([0, 1]d), ν := Law(X, Y ) (on R
N ×R

d), (with

m := Law(X), centered). Rewrite then the mean-independent

correlation maximization problem in terms of joint law:

sup
θ∈MI(µ,ν)

∫

RN×Rd×[0,1]d
u · y θ(dx, dy, du) (23)

where MI(µ, ν) consists of the probability measures θ on

R
N ×R

d ×R
d such that that ΠX,Y #θ = ν, ΠU#θ = µ and

according to θ, x is mean independent of u i.e.
∫

RN×Rd×[0,1]d
(b(u) · x)θ(dx, dy, du) = 0, ∀b ∈ C([0, 1]d,Rd).

(24)

Multivariate quantile regression/8



General case and duality 35

The constraints on the marginals can be rewritten as usual as

∫

ϕ(u)θ(dx, dy, du) =

∫

[0,1]d
ϕ(u)du, ∀ϕ,

∫

ψ(x, y)θ(dx, dy, du) =

∫

RN×Rd

ψ(x, y)du, ∀ψ.

One can then rewrite (23) as

sup
θ≥0

inf
ϕ,ψ,b

∫

RN×Rd×[0,1]d

(

u·y−ψ(x, y)−ϕ(u)−b(u)·x
)

θ(dx, dy, du).
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Switching the sup and the inf gives the (formal) dual:

inf
ψ,ϕ,b

∫

RN×Rd

ψ(x, y)ν(dx, dy) +

∫

[0,1]d
ϕ(u)du

subject to the pointwise constraint:

ψ(x, y) + ϕ(u) ≥ u · y + b(u) · x.

Multivariate quantile regression/10
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The existence of optimal functions ψ, ϕ and b is not totally

obvious. Assume

• the support of ν, is of the form spt(ν) := Ω where Ω is an

open bounded convex subset of RN ×R
d,

• ν ∈ L∞(Ω),

• ν is bounded away from zero on compact subsets of Ω that

is for every K compact, included in Ω there exists αK > 0

such that ν ≥ αK a.e. on K.

Theorem 1 Under the assumptions above, the dual problem

admits at least a solution (and its value coincides with that of

the mean-independent correlation maximization problem (23)) .
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In the standard OT problem, the dual potentials are convex

conjugates, one therefore have control on their regularity. Here,

we have no control on the additional Lagrange multiplier b.

Proof uses Komlos’ theorem and gives a b and a ϕ which are no

better than L1.
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Quantile regression as optimality conditions

In the dual problem, one can impose

ψ(x, y) = sup
t∈[0,1]d

{t · y − b(t) · x− ϕ(t)} (25)

so that ψ is convex.

Let U solve the mean-independent OT problem and (ψ, ϕ, b)

solve the dual.

The primal-dual relations give

ψ(x, y) + ϕ(t) + b(t) · x ≥ t · y pointwise (x, y, t) ∈ Ω× [0, 1]

and almost-surely

ψ(X, Y ) + ϕ(U) + b(U) ·X = U · Y.
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Since ψ is convex given by (25), this gives

(−b(U), U) ∈ ∂ψ(X, Y ),

or, equivalently

(X, Y ) ∈ ∂ψ∗(−b(U), U)

almost surely.

Multivariate quantile regression/14
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If ψ was smooth and b continuous, we would then have

U = ∇yψ(X, Y ), −b(U) = ∇xψ(x, y).

In this case, ψ solves the vectorial Hamilton-Jacobi equation:

∇xψ(x, y) + b(∇yψ(x, y)) = 0 (26)

Furthermore, if ϕ and b were smooth then

Y = ∇ϕ(U) +Db(U)TX = ∇ΦX(U)

(where Φx(t) := ϕ(t) + b(t) · x). We then see that ϕ and b are

consistent with multivariate quantile regression estimation.

But such regularity cannot be taken for granted.

Multivariate quantile regression/15
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Still, problems (22) and its dual thus enabled us to find:

• U uniformly distributed and mean-independent from X ,

• a map b from [0, 1]d to R
d and a convex function ψ,

such that (X, Y ) ∈ ∂ψ∗(−b(U), U).

Multivariate quantile regression/16
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Specification of multivariate quantile regression rather asks

whether one can write Y = ∇ϕ(U) +Db(U)TX := ∇ΦX(U)

with u 7→ Φx(u) := ϕ(u) + b(u)x is convex in u for fixed x.

In general, one gets from our optimization problems, a

relaxation of the affine in X specifiation of the conditional

quantile.
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Indeed, we have

Y ∈ ∂ψ∗
X(U), Y ∈ ∂uψ

∗(−b(U), U).

Setting ψx := ψ(x, .), Φx := ϕ(.) + b(.) · x, the constraint in the

dual can be rewritten as

ψx ≥ Φ∗
x hence ψ∗

x ≤ (Φx)
∗∗ ≤ Φx

(where Φ∗∗
x denotes the convex envelope of Φx). Although ΦX is

not convex in general, the duality relations also give the

following

Proposition 4

ΦX(U) = Φ∗∗
X (U) and U ∈ ∂Φ∗

X(Y ) i.e. Y ∈ ∂Φ∗∗
X (U)

almost surely.

Multivariate quantile regression/18
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Which is the natural relaxation of the relation Y = ∇ΦX(U)

which holds in the specified case in the general case where ΦX is

neither smooth nor convex.
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We have seen that quantile regression is tightly related to an

OT-like problem with a mean-independence constraint. This

enabled us to introduce a multivariate extension of the classical

Koenker and Basset framework. In this talk, we did not address

computational issues and applications to real data. Still, in the

discrete setting, the mean-independent OT problem can be

attacked by linear-programming techniques and there are

efficient methods to solve it. Whether one can obtain some

regularity of the solution of the dual remains to be investigated.
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