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e A (C*-algebra is a subalgebra of the algebra B(H) of bounded
linear operators on a Hilbert space H with the operator norm

IIaH=|srp [lax]] -

Ix||<1
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Basics of C*-algebras

e A C*-algebra is a subalgebra of the algebra B(H) of bounded
linear operators on a Hilbert space H with the operator norm

llall = sup [|ax]|.
lIxlI<1

e E.g., the space M,(C) of n x n-matrices on C" is a
C*-algebra.
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Basics of C*-algebras

A C*-algebra is a subalgebra of the algebra B(H) of bounded
linear operators on a Hilbert space H with the operator norm

llall = sup [|ax]|.
lIxlI<1

E.g., the space M,(C) of n x n-matrices on C" is a
C*-algebra.

One can abstractly axiomatize these C*-algebras.

A C*-algebra is unital if there is a multiplicative identity
denoted 1.

A C*-algebra is Abelian if the multiplication operation
commutes.

Model theory group The Model Theory of C*-algebras



We will only be concerned with the unital Abelian case today. In
this case, we have the following theorem:
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The Gelfand-Naimark theorem

We will only be concerned with the unital Abelian case today. In
this case, we have the following theorem:

Gelfand-Naimark

Given any unital Abelian C*-algebra A, there is a compact
Hausdorff space X such that

A C(X)

isometrically, where C(X) is the space of continuous functions on
X with addition and multiplcation defined pointwise and

*(x) = f(x) .
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The Gelfand-Naimark theorem

We will only be concerned with the unital Abelian case today. In
this case, we have the following theorem:
Gelfand-Naimark

Given any unital Abelian C*-algebra A, there is a compact
Hausdorff space X such that

A C(X)

isometrically, where C(X) is the space of continuous functions on
X with addition and multiplcation defined pointwise and

*(x) = f(x) .

We now turn to continuous logic.
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What is continuous logic?
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An L-formula is any expression made by combining
@ ||p(x)|| for p(x) a *-polynomial;




Formulas and things

L formulas
An L-formula is any expression made by combining
@ ||p(x)|| for p(x) a *-polynomial;
@ the operations max, min, and =, where
x =y = max{x —y,0};
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Formulas and things

L formulas
An L-formula is any expression made by combining
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Formulas and things

L formulas
An L-formula is any expression made by combining
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Q the operations supj| <1 and inf, <1
such that the resulting function makes sense.

@ When we plug in elements of our C*-algebra into the free
variables, we can evaluate a formula to a real number.
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Formulas and things

L formulas
An L-formula is any expression made by combining
@ ||p(x)|| for p(x) a *-polynomial;
@ the operations max, min, and —, where
x =y :=max{x —y,0};
© multiplication of a function by a real number; and
Q the operations supj| <1 and inf, <1
such that the resulting function makes sense.

@ When we plug in elements of our C*-algebra into the free
variables, we can evaluate a formula to a real number.

@ We call any combination of max, min, =, and multiplication
by real numbers connectives

o We call sup<1 and inf|,j <1 quantifiers.

@ We call all formulas with no free variables sentences.
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@ max acts like A
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@ max acts like A

@ min acts like V
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@ max acts like A
@ min acts like V

@ - acts like —
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@ max acts like A
@ min acts like Vv

@ — acts like —

@ sup,(<1 acts like Vx
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@ max acts like A

@ min acts like V

@ — acts like —

@ supjjx|<1 acts like Vx

@ infj,| <1 acts like x
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@ max acts like A

@ min acts like V

@ — acts like —

@ supjjx|<1 acts like Vx
@ infj,| <1 acts like x

@ Notice we never referred to the specific C*-algebra in question.
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o Given two C*-algebras A and B, we can ask when they have
the same value on sentences.
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What is model theory?

@ Given two C*-algebras A and B, we can ask when they have
the same value on sentences.

@ If they have the same value for enough sentences, then it is
possible to solve a problem about A by solving it for B!
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Calculate
sup inf sup max{[|x> —y+z—xyz+x —xy —2||,
lIxlI<tIIyII<1jz)|<1

interpreting the symbols in C[0, 1].
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min{||x6 _ y90200 + z299792458 _ 56834”, ||1 . y902X808||}}
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This is a hard calculation.
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Huh?

This is a hard calculation.

Quantifier Elimination

A admits quantifier elimination provided that, for any L formula
©(x1, ..., Xn), there exists a sequence Yp(xi, ..., x,) of formulas
without any instance of quantifiers such that

Nlim sup  |Yn(x1, ... xn) — @(x1,...,%x2)| =0

—00 X1,...Xn€D1

where the formulas are interpreted in the C*-algebra A.
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e Fix a C*-algebra A.
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o Fix a C*-algebra A.

@ Define the spectrum of a € A as

sp(a) = {A € C:a— Al is not invertible}
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o Fix a C*-algebra A.

@ Define the spectrum of a € A as

sp(a) = {A € C:a— Al is not invertible}

@ These generalize the idea of eigenvalues to any space.
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The spectrum

Fix a C*-algebra A.
Define the spectrum of a € A as

sp(a) = {\ € C:a— Al is not invertible}

These generalize the idea of eigenvalues to any space.

The spectrum sp(a) is a non-empty compact set.
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The spectrum

Fix a C*-algebra A.

Define the spectrum of a € A as

sp(a) = {\ € C:a— Al is not invertible}

These generalize the idea of eigenvalues to any space.

The spectrum sp(a) is a non-empty compact set.

In the case when A = C(X), sp(a) = range(a).
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@ The spectral theorem tells us
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The spectral theorem

@ The spectral theorem tells us

Spectral theorem

Given a normal operator a in a C* algebra A, there is an isometry
u: C*(1,a) — C(sp(a))

where C*(1, a) is the C*-algebra generated by 1 and a, u(1) =1,
and u(a) is the linear function x — x.
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The spectral theorem

@ The spectral theorem tells us

Spectral theorem

Given a normal operator a in a C* algebra A, there is an isometry
u: C*(1,a) — C(sp(a))

where C*(1, a) is the C*-algebra generated by 1 and a, u(1) =1,
and u(a) is the linear function x — x.

@ Let a,b € C(X) have sp(a) = sp(b).
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The spectral theorem

@ The spectral theorem tells us

Spectral theorem

Given a normal operator a in a C* algebra A, there is an isometry
u: C*(1,a) — C(sp(a))

where C*(1, a) is the C*-algebra generated by 1 and a, u(1) =1,
and u(a) is the linear function x — x.

@ Let a,b € C(X) have sp(a) = sp(b).
@ The spectral theorem guarantees that there is an isometry

C*(1,a) = C*(1, b)

given by sending 1 to 1 and a to b.
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e Given a formula ¢(x) with no quantifiers,

o(x) = u(||p1(X)|],- -, ||pn(x)||) for some *-polynomials
pi,...,Pn and u some connective.

Model theory group The Model Theory of C*-algebras



e Given a formula ¢(x) with no quantifiers,

o(x) = u(||p1(X)|],- -, ||pn(x)||) for some *-polynomials
pi,...,Pn and u some connective.

e Since sp(a) = sp(b), ||pk(a)ll = l[pk(b)]|-
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e Given a formula ¢(x) with no quantifiers,
o(x) = u(||p1(X)|],- -, ||pn(x)||) for some *-polynomials
pi,...,Pn and u some connective.

o Since sp(a) = sp(b). [|pk(a)l| = [|pk(b)]]-

@ Therefore ¢(a) = ¢(b).
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The model C[0, 1] does not eliminate quantifiers.
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The model C[0, 1] does not eliminate quantifiers.

o Getting quantifier elimination is not going to be easy!
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There are a few cases in which quantifier elimination holds.
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There are a few cases in which quantifier elimination holds.

Given a compact Hausdorff space X in which
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There are a few cases in which quantifier elimination holds.

@ X is of dimension 0, and
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There are a few cases in which quantifier elimination holds.

Given a compact Hausdorff space X in which

@ X is of dimension 0, and

@ X has no isolated points, then
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Some things do admit Q.E.

There are a few cases in which quantifier elimination holds.

Eagle, Vignati

Given a compact Hausdorff space X in which
@ X is of dimension 0, and
@ X has no isolated points, then

the space C(X) has quantifier elimination.
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Some things do admit Q.E.

There are a few cases in which quantifier elimination holds.

Eagle, Vignati

Given a compact Hausdorff space X in which
@ X is of dimension 0, and
@ X has no isolated points, then

the space C(X) has quantifier elimination.

e For example, given the Cantor space 2V, C(2Y) has quantifier
elimination.

Model theory group The Model Theory of C*-algebras



Some things do admit Q.E.

There are a few cases in which quantifier elimination holds.

Eagle, Vignati

Given a compact Hausdorff space X in which
@ X is of dimension 0, and
@ X has no isolated points, then

the space C(X) has quantifier elimination.

e For example, given the Cantor space 2V, C(2Y) has quantifier
elimination.

@ However, simple spaces like C" does not admit quantifier
elimination.
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We cannot do better than this.
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We cannot do better than this.

quantifer elimination.

Given any space X with an isolated point, C(X) does not admit
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We say that a function f : U — [0, 00) on a compact Hausdorff
space U is a peak function provided
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We say that a function f : U — [0, 00) on a compact Hausdorff
space U is a peak function provided

e sp(f) =10,1] and
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A criterion for failing to have quantifier elimination

Defintion: Peak property

We say that a function f : U — [0,00) on a compact Hausdorff
space U is a peak function provided

e sp(f) =[0,1] and
o theset {x e U:f(x)>1-— %} is connected.

Model theory group The Model Theory of C*-algebras



A criterion for failing to have quantifier elimination

Defintion: Peak property

We say that a function f : U — [0,00) on a compact Hausdorff
space U is a peak function provided

e sp(f) =[0,1] and
@ theset {x e U: f(x)>1— %} is connected.

Main result

If U is a compact Hausdorff space with a peak function then C(U)
does not admit quantifier elimination.
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Most nice spaces satisfy our criterion. For example
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Most nice spaces satisfy our criterion. For example
@ n-manifolds satisfy the criterion
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What spaces satisfy the criterion?

Most nice spaces satisfy our criterion. For example
@ n-manifolds satisfy the criterion

@ simplical complexes satisfy the criterion
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What spaces satisfy the criterion?

Most nice spaces satisfy our criterion. For example
@ n-manifolds satisfy the criterion
@ simplical complexes satisfy the criterion
o CW-complexes satisfy the criterion

@ the Hawaiian earring satisfies the criterion
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What spaces satisfy the criterion?

Most nice spaces satisfy our criterion. For example

n-manifolds satisfy the criterion

simplical complexes satisfy the criterion
CW-complexes satisfy the criterion

the Hawaiian earring satisfies the criterion

etc.
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We have even more negative results:
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We have even more negative results:

If X is a path-connected, compact, Hausdorff space then
C([0,1] x X) does not have quantifer elimination.
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This isn't looking good for quantifier elimination

We have even more negative results:

Thick spaces don't have quantifier elimination

If X is a path-connected, compact, Hausdorff space then
C([0,1] x X) does not have quantifer elimination.

E.g., for the Hilbert cube [0,1]Y, C([0,1]") does not have
quantifier elimination.
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We have classified a lot of spaces. This leaves us with
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We have classified a lot of spaces. This leaves us with

elimination?

Are there any spaces other than C(2) which admits quantifier
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Where to go from here

We have classified a lot of spaces. This leaves us with

Question

Are there any spaces other than C(2") which admits quantifier
elimination?

@ Here is an example of a space which is not classified: does
C(2Y x [0,1]) admit quantifier elimination?
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Where to go from here

We have classified a lot of spaces. This leaves us with

Question

Are there any spaces other than C(2") which admits quantifier
elimination?

@ Here is an example of a space which is not classified: does
C(2Y x [0,1]) admit quantifier elimination?
e Actually, yesterday we concluded C(2" x [0,1]) does not have
quantifier elimination.

@ What about non-Abelian C*-algebras?

@ We can show that M,(C(X)) for n > 2 does not admit
quantifier elimination, but the general question is still open.
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