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Background: Heat Equation

Laplacian in R": A=-Y", ax

o Let M € R" be a bounded domain with piecewise smooth boundary.
The heat equation

8]

¢:_A(p

It
¢(x,0) = @o(x)
(x,t)=0,Vxe€dM,t>0.

is the evolution equation for distribution of temperature on M given
the initial (t = 0) distribution by ¢p.
@ It has a formal solution given by

o(x,t) = e Py, t>0
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Background: Spectrum

An eigenvalue problem for a bounded domain M C R” with piecewise

smooth boundary:
Au=2Au
ulgp =0, u#0.

Which gives us a discrete set of positive numbers

Spec(M) ={A1,A2,---}

where

O<)Ll§2,2§'“—>°°
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Background: Weyl's Law

For a bounded domain M with piecewise smooth boundary in R”

w,Vol(M)

n/2 o
) A A—

N(A) ~
where @, is the volume of the unit ball in R" and
N(A) = #{k < A}

is the eigenvalue counting function: total number of eigenvalues less than
or equal to a given A.
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Background: Weyl's Law Example

Consider the case of M as a unit square in R%. We have
W =TT X 1°=x

Vol(M)=1x1=1

Then,
N(A) ~ #A
and this gives us
N(A) ~ %x, A oo
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Background: Weyl's Law

Figure: Weyl's Law: One can hear the area of a drum.
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Background: Weyl's Law

Note: By Weyl's Law, one can only hear the area of a drum but not the
shape.
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Figure: Isospectral but not isometric
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Background: Heat Kernel

@ Fundamental solution of the heat equation

IK(t,x,
(515 2 = —AK(t,X,y)
K(t,x,y) =0, Vx,y € dM,t > 0.
limeo K(t,x,y) = 8(y) forall x,y e M,

o Kernel of the integral operator e~ 4

e tAF(x) = /M K(t,x,y)f(y)dy

@ In terms of eigenvalues and orthonormal eigenfunctions of A

K(t.xy) = ioe-wn(xmn(y).
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Background: (Asymptotic) Heat Kernel Expansion
Theorem

Let M be a closed manifold with boundary, the expansion would be of the
form )
K(t,x,x) ~ (4mt) 2 (bo(x) + b1(x)t2 + ba(x)t +...)

ast— 0.

In this case, we only know that

bo(x)=1
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Background: Jacobi's Theta Function

The ©-function is

Using Poisson’s summation formula we get the relation:

1 1
O(t)=—06(-), t>0.
(0= 78(})
We also note the useful property that:
O(t) 1 t—0
\/E,
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Background: (Asymptotic) Heat Kernel Expansion
Theorem

Let M be a closed manifold, with no boundary, then we have an expansion
of the form

K(t,x,x) ~ (4mt) "2 (ap(x) + ar(x)t + ao(x)t2 +...)

ast—0.

Additionally we have that
ao(X) =1
1
a1(x) = ¢S(x)

where S(x) is the scalar curvature of M and S(x) = 2K(x) with K(x)
denoting the Gaussian curvature.
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Background: (Asymptotic) Heat Kernel Expansion
Theorem

@ Gaussian curvature of a sphere with radius R

1
K(X) = ﬁ

@ Gaussian curvature of a flat plane
K(x)=0

@ Gaussian curvature of a cylinder (two-dimensional)
K(x)=0

A two-dimensional cylinder comes from a flat plane.

v
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Background: Cases to Consider

We focus on the no boundary cases, thus, we would use the heat kernel
expansion for domains with no boundary.

o Sphere: 5% ={(x,y,z) eR® | x>+ y?+22 =1}

o Fractals

@ Quantum Sphere
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Cases to Consider: Fractals Example: Cantor Set

13
119
Z - - - - -

Figure: Construction of the triadic Cantor set. In each iteration, the middle third
of all the intervals is removed.
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Cases to Consider: Fractals Example: Diamond fractals

Figure: The first 2 iterations for Figure: Further iterations of the
diamond fractals D4 2, Dg 2, Ds 3 diamond fractal Dy »
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Cases to Consider: Fractals

Hausdorff-Besicovitch dimension dj:

d — lim InV(r)

r—0 Inr

where V/(r) is the volume of the fractal at length scale r.

Spectral dimension d;:

where Z(t) is the heat trace.

Walk dimension d,,:
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Cases to Consider: Quantum Sphere 53 - Noncommutative

Geometry

Geometry = Commutative Algebra

Algebra Geometry
xX2+y?=1 circle
X°+y?+2°=1 sphere
f(x1,...,xn) =0 hypersurface

Quantum sphere is noncommutative geometry. It's C*-algebra.
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Cases to Consider: Quantum Sphere Sg

Relations for quantum sphere 53
A, B e M,(C)

AB = ¢’BA
AB* = q 2B*A
BB* = g ?A(1 - A)
B*B = A(1—g°A)

forsome 0<g<1
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Eigenvalues and Multiplicities for Laplacian: Sphere S2

Eigenvalues and multiplicities for Laplacian are
A = k(k+1),
degy =2k+1

where k=0,1,2,3,....

Notice that eigenvalues grow quadratically with multiplicities growing
linearly.
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Eigenvalues and Multiplicities for Laplacian: Diamond

Fractals

Non degenerate eigenvalues: 72k?, for k =1,2,3,...

Degenerate eigenvalues (iterated eigenvalues):
2,2d,
Ak =nk Ln

obtained by rescaling dimensionless length L, and time T, at each
iteration n according to Lg = T,. Multiplicities

degy = BLSh = B(/%)"

where B = [9%~1 _1 is the branching factor of the fractal and /% is the
number of links into which a given link is divided.

The eigenvalues and multiplicities grow exponentially.
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Eigenvalues and Multiplicities for Dirac operator D:

Quantum Sphere

Non degenerate eigenvalues for Dirac operator D such that D? = A:

k+1/2 _ o= (k+1/2)

q
A = —
q—q

where

Note: As g — 1, the above numbers approach to the spectrum of Dirac
operator D for the sphere 52
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Heat Trace: Introduction

Definition

Z(t) = tr(e t?) = [ K(t,x,x)dx
M

~ (4mt) "2 ([ ao(x) + [ ar(x)t+ [ a2(x)t* +...)
M M M

in the case with no boundary.

Since ag = 1, the first term in this expansion is the volume of M.
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Heat Trace: Sphere S2

@ The heat trace for S2

Z(t)= Y (2k 4 1)e- K +h),
k=0

@ We will use this and the Euler-Maclaurin Summation Formula to find
the expansion for the heat trace.
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Heat Trace: Sphere S? Details

Use Euler-Maclaurin Summation Formula:

/f dx+ ), Z Bk f(" D(b)—FcI(a)) + Ry,

a

where By =1, B; = —%, B, = é, Byi+1 =0,i =1,2,... are the Bernoulli numbers and R, is the remainder.

In our case, f(k)= (2k—|—1)e*(k2+k)t, a=0, b=o. So
i 1
/2x+1 —OPE g ot ot
0

1 2 2
- —(x*+x)t 2 —(x*+x)t
t5 (2e t(2x+1)%e )
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Heat Trace: Sphere S? Details Continue

The first integral is:

/oo(2X+ 1)e—(x2+x)t dx = — le—(xz-i-x)t —

0 t

Then we have

1.1
—2( 24+t)+... =

1
=— |4 Tt
4(++)

At the same time, we know that

ag = Area (52) =4r

2=+,

and

4
a]_:§ 52de:§7t

where K is Gaussian curvature and scalar curvature S(x) = 2K.
In this way, we can compute all terms in the expansion.
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Heat Trace: Diamond fractals

@ The heat trace for diamond fractal is:

5]

Z(t) = i e*k271;2t_,r_(/dhfl _ 1) Z /ndh i efk27r2tl"dw‘

k=1 n=0 k=1

@ Log periodic oscillations of the heat trace

Z(t)w% <1+Otcos< 21 Iogt—i-(p) +>

t7 dylog/
for some real constants ¢, @and ¢. Recall that

~ 2dj

d
0=

where ds is spectral dimension and d}, is Hausdorff dimension.
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Heat Trace: Diamond Fractals Graph

Z (1) Z 1eading(1)

0.8}
0.6

1.005

=
041 0.005 J \ / ~

0.90( R -
0.2 0.985

0.98(

210 107 270 .

0.00 0.05 0.10 0.15 0.20 0.25

Figure: The log periodic oscillations, at small t, for the heat trace Z(t) on a
fractal, normalized relative to the leading term Zjeaging (t) = c/t%/2. The solid
curve is exact; the dashed curve is the first two terms in the approximate
expression.
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Heat Trace: Quantum sphere

@ The heat trace for quantum sphere is:

Z(t)= Z eaal!

However, we don't know the heat trace expansion for quantum sphere.
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{-function: Introduction

Spectral {-function

1 1 @ 1
CEe)=5+t75+= ) =5
( ) A‘l kgl 2'k

where Spec(A)={0<A; <A <...}.

@ ((s) has analytical continuation

§(s):C\{5-j} = C

where dimM =nand j=0,1,....
°

is Riemann {-function for Re s > 1.
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¢-function: Sphere S2

@ Polynomial growth of eigenvalues and multiplicities k> and k
respectively.
@ The spectral {-function for 52 is

Csrle) ~ ¥, e = G2 =)

e {-function has simple real poles {1—j} where j=0,1,..., with the
largest pole at s = 1.
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{-function: Diamond fractals

@ The spectral {-function of the fractals is
CR(2S) 1 — [t~ dos
Sols) = 251 (T s )

@ It has simple complex poles at

ds . 27xm
Ss=—4+i——, meZ
+ dglog!
with a spectral dimension ds, a walk dimension dg, Hausdorff
dimension d, and a spatial-decimation factor /.
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{-function: Diamond Fractals Graph
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Figure: Sketch of the complex pole structure of the zeta function for a fractal
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{-function: Quantum Sphere

@ The spectral {-function of the quantum sphere is

B > T(s+k) q2k
Cq(S)_4(1_q2)2,§0 KIF(S) (1_qs+2k)2

Note that I'(s) is an extension of factorials to s € C with Re(s) >0
and . s
r(s) :/ e t—dt
0 t
o All poles of {4(s) are complex of the second order:

ok 42T
logq

m

where k € N and me Z.
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Questions
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