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Mathematics fields of research (EDP, Numerical Analysis,HPC)

Moment methods for kinetic equations describing disperse two-phase flows, realizable
high order numerical methods and asymptotic limits (border of the moment space)

Adaptation in time and space, with error control based on operator splitting methods
and multiresolution analysis for the propagation of stiff reaction fronts

Derivation of thermodynamically consistant and well-posed fluid models for weakly
ionized plasma flows out of thermal and chemical equilibrium using kinetic theory
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Context

Industrial applications

Liquid propulsion: aeronautic or automotive combustion chambers,

Solid propulsion: solid rocket motor (alumina droplets),
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Combustion of polydisperse evaporating sprays
Atomization of the liquid phase
Mixing of the fuel and the air in the vapor phase
Combustion regimes and dynamics
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Context

Industrial applications

Liquid propulsion: aeronautic or automotive combustion chambers,

Solid propulsion: solid rocket motor (alumina droplets),

Propellant is aluminized to increase specific
impulse⇒ droplets of liquid aluminum oxide
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Context

Industrial applications

Liquid propulsion: aeronautic or automotive combustion chambers,

Solid propulsion: solid rocket motor (alumina droplets),

Presence of a disperse liquid phase: droplets with a large size spectrum

Droplets-gaz interactions
drag force, evaporation, heat transfer

Droplets-droplets interactions
collision, breakup

Key parameter: droplet size

Neglected volume fraction (source
term for gaz equations)

The flow around the droplets is not
resolved

Spherical droplets



High order moment methods in size
High order moment methods in velocity

Dealing with model coupling and asymptotic limits

Modelization of the disperse phase

Kinetic model

f(x,u,S,T ; t) : number density function (NDF)

Transport equation of Boltzmann type [Williams 1958],

∂t f + ∂x · (u f)︸            ︷︷            ︸
free transport

− ∂S(Kf)︸ ︷︷ ︸
evaporation

+ ∂u(F f)︸  ︷︷  ︸
forces

+ ∂T (E f)︸  ︷︷  ︸
heat exchanges

= Γ(f , f)︸︷︷︸
collisions

+ Q(f)︸︷︷︸
breakup

evaporation and heating : d2 law (K =cste, E = 0), infinite conductivity, . . .

drag and gravity : F =
Ug − u
τp

(
1 + Re2/3

6

)
+ g

coalescence : Γ(f , f) = −

∫
S∗

∫
u∗

f f ∗β(S,S∗)|u − u∗|dS∗du∗

+
1
2

∫
S∗∈[0,S]

∫
u∗

f� f ∗β(S�,S∗)|u� − u∗|JdS∗du∗

rebounds : Γ(f , f) =

∫
R

β(S,S∗)
∫
Rd

∫
S+

[f ′f ′∗ − ff ∗]|(u − u∗) · n|dn du∗dS∗

secondary breakup PhD [Dufour, 2005, Doisneau, 2013]
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Modelization of the disperse phase

Kinetic model

f(x,u,S,T ; t) : number density function (NDF)

Transport equation of Boltzmann type [Williams 1958],

∂t f + ∂x · (u f)︸            ︷︷            ︸
free transport

− ∂S(Kf)︸ ︷︷ ︸
evaporation

+ ∂u(F f)︸  ︷︷  ︸
forces

+ ∂T (E f)︸  ︷︷  ︸
heat exchanges

= Γ(f , f)︸︷︷︸
collisions

+ Q(f)︸︷︷︸
breakup

Lagrangian description

particular discretization - Monte-Carlo methods
[O’Rourke, 1981, Dukowicz, 1980, Bird, 1994]

advantages

usable in most cases

no numerical diffusion

disadvantages

slow convergence

difficulties for parallelization

coupling with the Eulerian
description of the gas
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Modelization of the disperse phase

Kinetic model

f(x,u,S,T ; t) : number density function (NDF)

Transport equation of Boltzmann type [Williams 1958],

∂t f + ∂x · (u f)︸            ︷︷            ︸
free transport

− ∂S(Kf)︸ ︷︷ ︸
evaporation

+ ∂u(F f)︸  ︷︷  ︸
forces

+ ∂T (E f)︸  ︷︷  ︸
heat exchanges

= Γ(f , f)︸︷︷︸
collisions

+ Q(f)︸︷︷︸
breakup

Eulerian description

Moments of the NDF: Mi,j,k (t , x) =
∫ ∫

S iujT k f(x,u,S,T ; t)dTdudS

System of conservation equations on moments

advantages

more easy to parallelize

natural coupling with the Eulerian
description of the gas

disadvantages

model (closures)

adapted numerical schemes
(hypercompressibility, vacuum
zones)
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Modelization of the disperse phase: a simplified case

Simplified and dimensionless kinetic model

f(x,u,S,�T ; t) : number density function (NDF)

Transport equation of Boltzmann type [Williams 1958],

∂t f + ∂x · (f u)︸            ︷︷            ︸
free transport

− ∂S(Kf)︸ ︷︷ ︸
evaporation

+ ∂u

(
Ug − u
St(S)

f
)

︸           ︷︷           ︸
Stokes drag

+

�
�
�
�∂T (E f)︸  ︷︷  ︸

heat exchanges

=

�
�
�Γ(f , f)︸︷︷︸

collisions

+

�
�
�Q(f)︸︷︷︸

breakup

Eulerian description

Moments of the NDF: M
i,j,�k

=
∫ ∫

S iuj��T k f(x,u,S,�T ; t)��dTdu dS

System of conservation equations on moments

S ∈ [0, 1]

u ∈ Rd
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Modelization of the disperse phase: a simplified case

Simplified and dimensionless kinetic model

f(x,u,S; t) : number density function (NDF)

Transport equation of Boltzmann type [Williams 1958],

∂t f + ∂x · (f u)︸            ︷︷            ︸
free transport

− ∂S(Kf)︸ ︷︷ ︸
evaporation

+ ∂u

(
Ug − u
St(S)

f
)

︸           ︷︷           ︸
Stokes drag

= 0

Eulerian description

Moments of the NDF: Mj
i =

∫ ∫
S iuj f(x,u,S; t)du dS

System of conservation equations on moments

S ∈ [0, 1]

u ∈ Rd
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Discretization Strategies for Polydisperse sprays

Size polydispersion and evolution has been successfully handled
PhD de Chaisemartin 2009, Fréret et al 2009, 2010, 2012, Kah, 2010 (SMAI/GAMNI -
ECCOMAS), Doisneau 2013, Massot et al. SIAP 2010, Kah et al. JCP 2012, Vié et al. JCP
2013, Doisneau et al. JCP 2013, Doisneau et al. JPP 2014

kinetic model

phase space:
(x, Φ, u)

particular
discretization

DSMC

?

Discrete Lagrangian
model

2 moments
−−−−−−−→

in velocity

semi-kinetic model

phase space: (x, Φ)

semi-discretisation

1/2/4 moment(s) in size

?

multi-fluid model

Eulerian model (x)

discretisation

in space (FV)

?

Discrete Eulerian model

−−−−−−→ two-fluid
dilute model
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Eulerian multi-fluid models

Principle of the method (simplified case)

A conservation law system for each size interval (section)

dr
op

le
t n

um
be

r!

S!

dr
op

le
t v

el
oc

ity
!

S!
Assumptions :

f(t , x,u,S) = n(t , x,S)δ(u − ud(t , x,S))
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Eulerian multi-fluid models

Principle of the method (simplified case)

A conservation law system for each size interval (section)

ssk-1!
section !

!
k! S!

dr
op

le
t n

um
be

r!

S!

dr
op

le
t v

el
oc

ity
!

Considered moments:

m(j)(t , x) =

∫ Sj

Sj−1

S3/2
∫

f(t , x,u,S) dudS

m(j)u(j)(t , x) =

∫ Sj

Sj−1

S3/2
∫

uf(t , x,u,S) dudS
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Eulerian multi-fluid models

Principle of the method (simplified case)

A conservation law system for each size interval (section)

ssk-1!
section !

!
k! S!

dr
op

le
t n

um
be

r!

S!

dr
op

le
t v

el
oc

ity
!

presumed pdf in each section k
n(t , x,S) = m(k)(t , x)κ(k)(S)
ud(t , x,S) = ud

(k)(t , x)
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Eulerian multi-fluid models

Principle of the method (simplified case)

A conservation law system for each size interval (section)

ssk-1!
!
k!

coupling with the gas!

 evaporation!

S!
section !

dr
op

le
t n

um
be

r!

Equations: [Laurent and Massot, 2001]

∂t (m(k)) + ∂x · (m(k)u(k)) =−(E(k)
1 + E(k)

2 )m(k) + E(k+1)
1 m(k+1)

∂t (m(k)u(k)) + ∂x · (m(k)u(k) ⊗ u(k)) =−(E(k)
1 + E(k)

2 )m(k)u(k) + E(k+1)
1 m(k+1)u(k+1)

+ m(k)F (k)



High order moment methods in size
High order moment methods in velocity

Dealing with model coupling and asymptotic limits

Eulerian multi-fluid models

Eulerian multi-fluid models

Very good agreement with the Lagrangian
model [de Chaisemartin, 2009]

Validation through comparisons with
experiments
[Freret et al., 2008]

Efficient parallelization [Fréret et al., 2010]
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Eulerian multi-fluid model

Code MUSES3D - S. de Chaisemartin, L. Fréret
Conservation equations for each size interval:

∂t m(j) + ∂x .(m(j)u(j)
d ) = 0

∂t (m(j)u(j)
d ) + ∂x .(m(j)u(j)

d ⊗ u(j)
d ) = m(j)F(j)

0 0.5 1 1.5 2 2.5 3
droplet diameter

0

0.2

0.4

0.6

0.8

1

N
D

F
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Eulerian multi-fluid model

Code MUSES3D - S. de Chaisemartin, L. Fréret
Conservation equations for each size interval:

∂t m(j) + ∂x .(m(j)u(j)
d ) = 0

∂t (m(j)u(j)
d ) + ∂x .(m(j)u(j)

d ⊗ u(j)
d ) = m(j)F(j)

mono-kinetic assumption at a given size, location and time
Equivalent to pressureless gas dynamics
For DNS and Low Stokes numbers

multi-fluid model multi-velocity model

x

y

1 2 3 4 5 6 7
1

2

3

4

5

6

7

x

y

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Key issue : accurate schemes in space and time
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Eulerian multi-fluid model

Code MUSES3D - S. de Chaisemartin, L. Fréret
Conservation equations for each size interval:

∂t m(j) + ∂x .(m(j)u(j)
d ) = 0

∂t (m(j)u(j)
d ) + ∂x .(m(j)u(j)

d ⊗ u(j)
d ) = m(j)F(j)

one-moment per section leads to a first order moment method

strong numerical diffusion in size phase space

several sections needed for an accurate resolution of evaporation
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Eulerian multi-fluid model

Code MUSES3D - S. de Chaisemartin, L. Fréret
Conservation equations for each size interval:

∂t m(j) + ∂x .(m(j)u(j)
d ) = 0

∂t (m(j)u(j)
d ) + ∂x .(m(j)u(j)

d ⊗ u(j)
d ) = m(j)F(j)

one-moment per section leads to a first order moment method

strong numerical diffusion in size phase space

several sections needed for an accurate resolution of evaporation

General objectif : design higher order moment methods in size and velocity
which preserve realizability

and built-in realizability preserving numerical methods - high order
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Outline

1 High order moment methods in size, with realizable and accurate numerical
methods

2 High order moment methods in velocity, with realizable and accurate
numerical methods

Up to second order moment methods (statistical crossing)
Higher order moment methods (deterministic crossing)
Multi-Gaussian model

3 Dealing with model coupling and asymptotic limits
A Hybrid model and related relaxation scheme
An Asymptotic-Preserving Relaxation scheme
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Evolution of the Eulerian multi-fluid models

1 moment/section

[Laurent and Massot, 2001]

2 moments/section

[Laurent, 2006, Doisneau et al 2013]

4 moments/section

[Massot et al., 2010, Kah et al 2012]

increasing the number of size moments per section
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

decreasing the number of sections
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

decreasing the cost
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

increasing the model complexity



High order moment methods in size
High order moment methods in velocity

Dealing with model coupling and asymptotic limits
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Moment method for purely evaporating case

Kinetic model for purely evaporating case, d2 law, dimensionless{
∂t f − ∂S(K f) = 0, t ∈ R+,S ≥ 0
f(0,S) = f0(S), S ≥ 0

with K = 1[0,+∞[(S)

solution: f(t ,S) =
(∫ t

0
f0(σ)dσ

)
δ0(S) + f0(S + t)

Moments: Mk =

∫ 1

0
Sk f(S)dS, k = 0, . . . ,N

System to solve:

dtM = −AM − φ−, M = (M0, . . . ,MN)t

with

φ− = f(t , 0)


1
0
...
0

 , A =



0 0
1 0

2
. . .

. . .
. . .

0 N 0


.

closure problem: pointwise values of f from its moments
realizability problem: M has to stay in the moment space
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Moment method for purely evaporating case

Kinetic model for purely evaporating case, d2 law, dimensionless{
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Moment space

Nth moment space of probability measures on [0, 1]

M̃N = {cN(µ)|µ ∈ P}, cN(µ) = (c1(µ), . . . , cN(µ))t , ck (µ) =

∫ 1

0
xk dµ(x).

→ convex space but “complex" geometry

c2
1 < c2 < c1 M̃3

⇒ the numerical methods have to preserve this space



High order moment methods in size
High order moment methods in velocity

Dealing with model coupling and asymptotic limits

Moment space

Nth moment space of probability measures on [0, 1]

M̃N = {cN(µ)|µ ∈ P}, cN(µ) = (c1(µ), . . . , cN(µ))t , ck (µ) =

∫ 1

0
xk dµ(x).

→ convex space but “complex" geometry

⇒ the numerical methods have to preserve this space
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Moment space

Nth moment space of probability measures on [0, 1]

M̃N = {cN(µ)|µ ∈ P}, cN(µ) = (c1(µ), . . . , cN(µ))t , ck (µ) =

∫ 1

0
xk dµ(x).

Hankel determinants:

H2m+d =

∣∣∣∣∣∣∣∣∣∣
cd . . . cm+d

...
...

cm+d . . . c2m+d

∣∣∣∣∣∣∣∣∣∣ H2m+d =

∣∣∣∣∣∣∣∣∣∣
c1−d − c2−d . . . cm − cm+1

...
...

...
cm − cm+1 . . . c2m−1+d − c2m+d

∣∣∣∣∣∣∣∣∣∣
M = (c1, . . . , cN) ∈ M̃N ⇔ H i ≥ 0 and H i ≥ 0 for d = 0, 1 and i = 0, . . . ,N.

M = (c1, . . . , cN) ∈
˚̃MN ⇔ H i > 0 and H i > 0 for d = 0, 1 and i = 0, . . . ,N.

Canonical moments [Dette and Studden, 1997]:

p1 = c1, p2 =
c2 − c2

1

c1(1 − c1)
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Reconstruction
Finite Hausdorff moment problem for the moment vectorM

find a non-negative real function fM defined on [0, 1] and such that

M =

∫ 1

0
fM(x)


1
x
...

xN

 dx

Let us assume thatM belongs to the interior of MN → infinity of solutions
quadrature solution as a sum of Dirac delta functions
polynomial reconstruction [Laurent, 2006]

reconstruction with a sum of beta PDF [Yuan et al., 2012]

Shannon’s Entropy maximization H[f ] = −

∫ 1

0
f(x) ln f(x)dx

[Mead and Papanicolaou, 1984, Tagliani, 1999, Massot et al., 2010]

⇒ f(x) = exp

− N∑
j=0

ξjx j


The interior of the moment space is entirely attained (in theory).
Calcul of the ξj by an iterative Newton method
Calcul of the integrals by a Gauss-Legendre quadrature
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f(ξ) =
n∑

α=1

wα

ξ
ξα
σ −1(1 − ξ)

1−ξα
σ −1

B
(
ξα
σ
, 1−ξα

σ

)
→ one recover the quadrature when σ→ 0
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Examples of reconstructions

1 moment/section

contant function in the
section

12 moments

2 moments/section

bi-affine function
8 moments

4 moments/section

entropy maximization
4 moments

increasing the number of size moments per section
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

decreasing the number of sections
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

decreasing the cost
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

increasing the model complexity
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Robust algorithm for the resolution: purely evaporating case

System to solve:

dtM = −AM − φ−, M = (M0, . . . ,MN)t

Integral version of the system

The integral form of the solution is written :

exp(t A)M(t) =M(0) −Ψ−(t), Ψ−(t) =

t∫
0

f(0, β)


1
β
...
βN

 dβ.

Algorithm

1. Reconstruction fME by entropy maximization and
flux evaluation

2. Shift in size

3. Projection



High order moment methods in size
High order moment methods in velocity

Dealing with model coupling and asymptotic limits
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The integral form of the solution is written :
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Algorithm

1. Reconstruction fME by entropy maximization and
flux evaluation

Ψ−(t) =

t∫
0

fME(0, β)


1
β
...
βN

 dβ.

2. Shift in size
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Robust algorithm for the resolution: purely evaporating case

Integral version of the system

The integral form of the solution is written :

exp(t A)M(t) =M(0) −Ψ−(t), Ψ−(t) =

t∫
0

f(0, β)


1
β
...
βN

 dβ.

Algorithm

1. Reconstruction fME by entropy maximization and
flux evaluation

2. Shift in size

Mk (0)−Ψk−(t) =

(N+1)/2∑
i=1

wi(0)Si(0)k ,
dSi

dt
= −1

the abscissas Si(0) are in [t , 1 + t]

3. Projection
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Robust algorithm for the resolution: purely evaporating case

Integral version of the system

The integral form of the solution is written :

exp(t A)M(t) =M(0) −Ψ−(t), Ψ−(t) =

t∫
0

f(0, β)


1
β
...
βN

 dβ.

Algorithm

1. Reconstruction fME by entropy maximization and
flux evaluation

2. Shift in size

3. Projection

Mk (t) =

(N+1)/2∑
i=1

wi(t)Si(t)k

M(t) is a moment vector!
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Robust algorithm for the resolution: purely evaporating case

Integral version of the system

The integral form of the solution is written :

exp(t A)M(t) =M(0) −Ψ−(t), Ψ−(t) =

t∫
0

f(0, β)


1
β
...
βN

 dβ.

Algorithm

1. Reconstruction fME by entropy maximization and
flux evaluation

2. Shift in size

3. Projection

generalized to any S dependent
evaporation law

For N=3, the method is called
EMSM (Eulerian Multi-Size
Model)
[Massot et al., 2010]
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Error on mass evolution

Error for the purely evaporating case

EMSM more efficient than the classical method (1 moment/section) with 12
sections

equivalent error between the second order method with 4 sections (8
moments) and the 4 moment method with 1 section

EMSM highly decrease the computation cost compared to Multi-fluid model
(in 2D, 36 moments for the Multi-fluid method, 6 moments for EMSM)
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Advection scheme
General method: splitting between transport in physical space and transport in
phase space.
→ the transport part has also to preserve the moment space

Kinetic model for purely advection case: f(x,u,S; t)

∂t f + u · ∂x f = 0

Monokinetic assumption: f(x,u,S; t) = n(t , x,S)δ(u − ud(t , x)){
∂t (M) + ∂x(Mud) = 0,

∂t (M1ud) + ∂x(M1ud ⊗ ud)= 0.

→ weakly hyperbolic system [Bouchut, 1994]

⇒ Kinetic finite volume scheme [Bouchut et al., 2003]

Mn
j , u

n
j M

n+1
j , un+1

jy x
f(x, u,S; tn)

exact evolution
−−−−−−−−−−→

∆t
f(x, u,S; tn+1)

with

f(x, u,S; tn) = fMn(x)(S) δ(u − un(x))

Difficulty: for the second order of accuracy, the x-reconstruction is not trivial
→ x-reconstruction of canonical moments [Kah et al 2012]

and use of a symbolic algebra software to determine the fluxes
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Configuration

Free jets with polydisperse spray injection and evaporation [de Chaisemartin et al., 2009]

Injection of a polydisperse spray in the center of the jet

Re=1000 with a low level turbulence injection for destabilization purposes.

Droplet distribution between Stokes = 0.03 and 0.75
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Dealing with model coupling and asymptotic limits

Configuration

Free jets with polydisperse spray injection and evaporation [de Chaisemartin et al., 2009]

Injection of a polydisperse spray in the center of the jet

Re=1000 with a low level turbulence injection for destabilization purposes.

Droplet distribution between Stokes = 0.03 and 0.75

Eulerian code MUSES3D [de Chaisemartin, 2009]

Generic solver allowing implementation of new methods

Fully parallelized (efficiency one on Certainty up to 512 cores)

Coupling with a gaseous (Low Mach) + Lagrangian solver ASPHODELE
from J. Reveillon, CORIA, Rouen
⇒ possibility of Eulerian and Lagrangian computation on the same gaseous
field
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Comparison with the Multi-fluid model

m3/2

YF

EMSM Multi-Fluid with 10 sections

Excellent agreement⇒ validation of EMSM

EM reconstruction optimized up to the frontier of moment space
adaptive (Kah et al JCP 2012 - Vié et al JCP 2013)
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Implementation in semi-industrial codes

CEDRE code (ONERA)
(F. Doisneau, Collab. J. Dupays, A. Murrone)

non-structured meshes (cell-center)

DNS / LES

Multi-fluid with two size moments

Two PhDs: F. Doisneau, A. Sibra
Collab. J. Dupays

first Multi-Fluid computations of a booster
with coalescence

improvement of the two-way coupling
strategy - combustion of aluminium
[Doisneau et al 2013, Doisneau et al 2014]

IFP-C3D code (IFPEn)

moving meshes (ALE)

RANS

EMSM with four size moments

polydisperse computation:
selective repartition of droplets

. . . . . .

Two-phase Solid Rocket Motor Simulations
Eulerian Multi-Fluid modeling

Polydisperse Simulations
Impact of coalescence

Configuration
Solid particles

.. Solid particle volume fractions

Monodisperse simulation
1.0x10-04
4.1x10-05
1.7x10-05
7.1x10-06
2.9x10-06
1.2x10-06
5.0x10-07

Volume fraction (m3/m3) for monodisperse particles with d30 = 6.5µm

Polydisperse simulation (3 sections)

14.1
13.8
13.6
13.3
13.0
12.8
12.5

1.00x10-04
3.47x10-05
1.20x10-05
4.16x10-06
1.44x10-06
5.00x10-07

Volume fraction per section and d30 mean diameter (µm) of section 3 for polydisperse particles

Levels reduced ⇒ confirms the selective repartition mechanism

F. Doisneau 4th EUCASS, St Petersburg, RUSSIA 201130% overestimation of pressure
oscillation levels with
monodisperse computation

polydisperse computation
with coalescence: significative
influence of the coalescence

. . . . . .

Two-phase Solid Rocket Motor Simulations
Eulerian Multi-Fluid modeling

Polydisperse Simulations
Impact of coalescence

Liquid particles
Instability levels

.. Liquid particle volume fractions

14.1
13.8
13.6
13.3
13.0
12.8
12.5

1.00x10-04
3.47x10-05
1.20x10-05
4.16x10-06
1.44x10-06
5.00x10-07

Volume fraction per section and d30 mean diameter (µm) of section 3 for liquid polydisperse particles

Droplet size increase of 1.4µm for section 3

Levels even more reduced ⇐ detuning of the dispersed phase

F. Doisneau 4th EUCASS, St Petersburg, RUSSIA 2011

19% decreasing of pressure
oscillation levels with the
coalescence
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Implementation in semi-industrial codes

CEDRE code (ONERA)
(F. Doisneau, Collab. J. Dupays, A. Murrone)

non-structured meshes (cell-center)

DNS / LES

Multi-fluid with two size moments

IFP-C3D code (IFPEn)

moving meshes (ALE)

RANS

EMSM with four size moments

Two PhDs: D. Kah, O. Emre
Collab. S. Jay, S. de Chaisemartin, Q.-H Tran

injection computations

mesh movement with preservation of
moment space [Kah et al 2014, Emre et al
2014, Emre et al 2015]

Lagrangian EMSM

7.5 Injection of high inertia droplets 32

Figure 14: Results for a droplet population of rSMR = 5µm at time 1.4 · 10−2 s. Left : Spray without evaporation. Right :
Spray with constant evaporation velocity. Spray volume fraction (top row), gas velocity along the y-axis (middle row),
spray velocity along the y-axis (bottom row). In each panel, Lagrangian spray is displayed on the left side whereas Eulerian
on the right side.

Figure 15: Results for a droplet population of rSMR = 5µm under a constant evaporation velocity at time 1.4 · 10−2 s.
Left : Evaporated fuel mass fraction. Right : Gas temperature. In each panel, Lagrangian spray is displayed on the left side
whereas Eulerian on the right side.

7.5. Injection of high inertia droplets

In case of a droplet population with rSMR = 20µm, results from fields of spray volume fraction,
spray velocity, gas velocity are illustrated by Fig. 18, whereas Fig. 19 shows the fields of vaporated fuel
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Implementation in semi-industrial codes

CEDRE code (ONERA)
(F. Doisneau, Collab. J. Dupays, A. Murrone)

non-structured meshes (cell-center)

DNS / LES

Multi-fluid with two size moments

IFP-C3D code (IFPEn)

moving meshes (ALE)

RANS

EMSM with four size moments

AVBP code (CERFACS and IFPen)

complex geometry

non-structured meshes (cell vertex)

LES (Vié et al 2013)

A. Vié
Collab. B. Cuenot

first LES computations
(Multi-Fluid + MEF
formalism)
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Mesoscopic description: simplified Williams-Boltzmann equation

Monodisperse, constant size and temperature [Williams 1958]

∂t f + ∂x · (uf) + ∂u · (Ff) = 0, F =
Ug − u
τp

(1)
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Mesoscopic description: simplified Williams-Boltzmann equation

Monodisperse, constant size and temperature [Williams 1958]

∂t f + ∂x · (uf) + ∂u · (Ff) = 0, F =
Ug − u
τp

(1)

Macroscopic description: moment equations

Integrating (1) over the velocity phase space:

∂tMk + ∂x · Mk+1 = k
Mk−1 � Ug −Mk

τp
(2)

where Mk =
∫
Rd

(
⊗k u

)
f(t , x,u)du

Closure problem: the highest order flux is unknown
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Kinetic-Based Moment Method

∂tMk + ∂x · Mk+1 = k
Mk−1 � Ug −Mk

τp
(3)

Closure: based on the choice of a presumed shape of the NDF (f )

having as many parameters as the number of moments one needs to control

Advantages

Coupling with the gas

Parallel computing

Well posed systems

Direct link with the kinetic level

Challenges

Numerical schemes
Realizability preservation

Realizability

Every set of moments has to be
associated with a positive f
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Low inertia (St<Stc) High inertia

*No crossing
*High velocity correlation
*Monokinetic

*Crossing
*Complex correlation
*Polykinetic
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Kinetic-Based Moment Method

Mono-Kinetic

f(t , x,u) = ρ(t , x)δ(u − ud(t , x))

Anisotropic Gaussian

f(t , x,u) = ρ(t , x)N(u − ud ,Σ)

Mono-Kinetic 
∂tρ + ∂x · (ρud) = 0

∂t (ρud) + ∂x · (ρud ⊗ ud) =
ρ(Ug − ud)

τp

PGD (P=0) : weakly hyperbolic

can generate δ-shocks and singularities: difficult to handle numerically

reproduces the dynamics of low inertia particles with stiff accumulation and
void regions
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f(t , x,u) = ρ(t , x)δ(u − ud(t , x))

Anisotropic Gaussian

f(t , x,u) = ρ(t , x)N(u − ud ,Σ)

N =
exp(− 1

2 (u−ud )TΣ−1(u−ud ))

((2π)d
|Σ|)

1/2

Anisotropic-Gaussian

∂tρ + ∂x · (ρud) = 0
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τp
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ρ(Ug � ud − 2E)

τp
where

E = 1
2 ud ⊗ ud + P

2ρ

P = ρΣ

Entropy structure

Hyperbolic
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Mono-Kinetic

f(t , x,u) = ρ(t , x)δ(u − ud(t , x))

Anisotropic Gaussian

f(t , x,u) = ρ(t , x)N(u − ud ,Σ)

N =
exp(− 1
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∂t (ρud) + ∂x · (ρud ⊗ ud + P) =
ρ(Ug − ud)

τp

∂t (ρE) + ∂x · ((ρE + P) � ud) =
ρ(Ug � ud − 2E)

τp
where

E = 1
2 ud ⊗ ud + P

2ρ
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Entropy structure

Hyperbolic

Isotropic Gaussian: Euler System

∂tρ + ∂x · (ρud) = 0

∂t (ρud) + ∂x · (ρud ⊗ u + P) =
ρ(Ug − ud)

τp

∂t (ρE) + ∂x · ((ρE+ P) · ud) =
ρ(Ug · ud − 2E)

τp

with E = tr(E) = 1
2 |ud |

2 + σ, and P = PI = ρσI
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Numerical Scheme: FV MUSCL/HLL

Free transport in the x-direction:

∂t M + ∂xF (M) = 0

Structured Meshes

Directional Splitting

Realizability Preserving Numerical Flux F ∗

Mn
i−1,M

n
i ,M

n
i+1 ∈ S ⇒ Mn+1

i ∈ S

Mn+1
i = Mn

i −
∆t
|Ci |

(
F
∗(Mn

i+1,M
n
i ) − F ∗(Mn

i ,W
n
i−1)

)
Flux evaluation

M∗ =
ML −MR

λmin − λmax
−
F (ML ) − F (MR )

λmin − λmax

F
HLL =

1
2

(F (ML ) + F (MR )) −
|λmin |

2
(M∗ −ML ) −

|λmax |

2
(MR −M∗)
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Numerical Scheme: FV MUSCL/HLL

Realizability (AG)

ρ > 0,

p11 > 0, p22 > 0,

p11p22 − p2
12 > 0.

Realizable AND Conservative reconstruction
Primitive Variables: U = (ρ,ud ,P)

Realizable reconst.: Uj(x) = Uj + DU(x − xj)

Conservative correction:
∫
Cj

M (Uj(x)) = Mj imposed by the conservation of
the cell value for each moment in order to ensure that the fluxes will not
affect the realizability (Vié et al. 2015)



High order moment methods in size
High order moment methods in velocity

Dealing with model coupling and asymptotic limits

Up to second order moment methods
Higher order moment methods
Multi-Gaussian model

Time integration

SSP-RK2 Time Integration (Gottlieb et al. 2001)

M(1)
i = Mn

i −
1
2

∆t
∆x

(
F

n
i+1/2 − F

n
i−1/2

)
Mn+1

i =
Mn

i

2
+

1
2

[
M(1)

i −
∆t
∆x

(
F

(1)
i+1/2 − F

(1)
i−1/2

)]

2nd-order in space and time and realizable scheme, under CFL 0.5
Mn ∈ S ⇒ Mn+1 ∈ S
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2D DNS results

Test case

Frozen HIT velocity field

Homogeneous spray at t=0

2 Stokes numbers: 1 and 5
Results

Snapshots of the number
density

Segregation vs. time for
different models

Segregation and MCE vs. St

Segregation: spatial correlation of
the number density field at a given
cell size length
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AG qualitatively match the Lagrangian results, no unphysical accumulations
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Segregation vs. time (St=5)

MK and Iso: greatly overestimate the segregation
AG: converge to Lagrangian
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Segregation vs. St

AG: right behavior for the range of Stokes number studied
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Taking into account statistical PTC

Lagrangian ref. solution - Isotropic Kinetic Closure - Gaussian Kinetic Closure

Stokes = 10 - Homogeneous Isotropic turbulence - density of particles
Vié, Doisneau, Massot, CICP 2015 - HLL realizable 2nd order in space and time.
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Up to second order moment methods
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Taking into account statistical PTC

Mesh refinement indicated the proper choice in terms of modeling

Stokes = 10 - Homogeneous Isotropic turbulence - density of particles
Vié, Doisneau, Massot, CICP 2015 - HLL realizable 2nd order in space and time.
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Taking into account statistical PTC

Lagrangian ref. solution - Gaussian Kinetic Closure - Algebraic Closure

Stokes = 5 - Shear layer + Homogeneous Isotropic turbulence - density of
particles
Vié, Masi, Simonin, Massot (Summer Program 2012 - Stanford University - CTR).

DNS (and LES) : Need to couple PGD and higher order moment methods
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High order numerical schemes and unstructured meshes

1D comparison of different numerical schemes (Larat el al. 2012, Sabat et
al. 2015)

Unstructured realizability preserving DG method (Larat el al. 2012, Sabat et
al. 2014)

FV structured 1282 DG structured 1282 DG unstructured 642
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Lagrangian DG structured 1282 DG unstructured 642
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1D comparison of different numerical schemes (Larat el al. 2012, Sabat et
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al. 2014)
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Moment method in velocity

Simplified and dimensionless kinetic model

f(x,u; t) : number density function (NDF)

Williams - Boltzmann transport equation

∂t f + ∂x · (u f) + ∂u

(
Ug − u

St
f
)

= 0

Eulerian description

Moments of the NDF:

Mj =

∫
uj f(x,u; t)du =

∫
uj1

1 . . . u
jd
d f(x,u; t)du1 . . . dud

moment vector: M = (Mj)j∈S, S finite subset of Nd

equations onM

example in 1D:

∂t M j + ∂xM j+1 =
UgM j−1 −M j

St

→ need a closure for MN+1
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Closure

Objective

Express higher order moments as a function of the moment vectorM

1D case

Finite Hamburger moment problem for the moment vectorM:

forM = (M0,M1, . . . ,MN)t , find a non-negative real function fM defined on R
such that

∀j ∈ {0, 1, . . . ,N} M j =

∫
uj fM(x, u; t)du

Hankel determinants:

Hm =

∣∣∣∣∣∣∣∣∣∣
M0 . . . Mm−1

...
...

Mm−1 . . . M2m−2

∣∣∣∣∣∣∣∣∣∣
the problem has a solution (an infinity in fact) if Hm > 0 for m = 1, . . . ,N + 1.

2D/3D case

Problem:

forM = (Mj)j∈S, find a non-negative real function fM defined on R such that

∀j ∈ S Mj =

∫
uj fM(x,u; t)du

Theoretical
difficulties:

→ choice S
→ existence of solutions
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Closure examples
0 St 1 10 

No trajectory crossing Small-scale modeled 
trajectory crossing 

Large-scale trajectory 
crossing 

Eulerian multi-fluid model ACBMM (IMFT) 
Anisotropic Gaussian (EM2C) 

CQMOM 
Multi-Gaussian 

Monokinetic assumption
[de Chaisemartin, 2009]

Algebraic-Closure-Based
[Simonin et al., 2002, Masi and Simonin, 2012]

Anisotropic Gaussian
closure [Vié et al 2015]

Quadrature closure
[Fox et al., 2008, de Chaisemartin et al., 2009,

Yuan et al 2011, Chalons et al., 2012]

Multi-Gaussian closure
[Chalons et al., 2013]
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Multi-gaussian closure - 1D case

model for advection: ∂t f + ∂x(uf) = 0

∂tM+ ∂xF (M) = 0

Moment vector: M = (M0,M1,M2,M3,M4)t

Flux F (M) = (M1,M2,M3,M4,M
5
)t

Centered norm. moments on M1/M0

e=
M0M2−(M1)2

(M0)2 ,

q=
(M3(M0)2−(M1)3)−3M1(M0M2−(M1)2)

(M0)3

η=
−3(M1)4+M4(M0)3−4(M0)2M1M3+6M0(M1)2M2

(M0)4 .

Closure

fG(u) =
2∑

α=1

ρα

σ
√

2π
exp

− (u − uα)2

2σ2


with ρ1, ρ2, u1, u2 and σ such that

∀j ∈ {0, 1, 2, 3, 4}
∫
R

uj fG(u)du = M j

and

M
5

=

∫
R

u5fG(u)du

Proposition

Be Ω =
{
M, M0 > 0, e > 0, η > e2 + q2

e , and η ≤ 3e2 if q = 0
}
.

Setting U = (ρ1, ρ2, ρ1u1, ρ2u2, σ)t , the function U = U(M) is one-to-one and
onto when u1 , u2, provided that we set ρ1 = ρ2 in the case u1 = u2. Moreover,
σ2 the unique real root of the polynomial P = 2(X − e)3 + (η − 3e2)(X − e) + q2.
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∀j ∈ {0, 1, 2, 3, 4}
∫
R

uj fG(u)du = M j

and

M
5

=

∫
R

u5fG(u)du

Proposition

Be Ω =
{
M, M0 > 0, e > 0, η > e2 + q2

e , and η ≤ 3e2 if q = 0
}
.

Setting U = (ρ1, ρ2, ρ1u1, ρ2u2, σ)t , the function U = U(M) is one-to-one and
onto when u1 , u2, provided that we set ρ1 = ρ2 in the case u1 = u2. Moreover,
σ2 the unique real root of the polynomial P = 2(X − e)3 + (η − 3e2)(X − e) + q2.
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Computation algorithm

Step 1: computation of σ

Finding the unique real root of

P = 2(X − e)3 + (η − 3e2)(X − e) + q2

→ A limiter is added to control the maximal value of the eigenvalues

Step 2: computation of ρ1, ρ2, u1, u2

One solves:

M0 = ρ1 + ρ2,

M1 = ρ1u1 + ρ2u2,

M2 − σ2M0 = ρ1u2
1 + ρ2u2

2,

M3 − 3σ2M1 = ρ1u3
1 + ρ2u3

2,

→ Quadrature algorithm for computation of abscissas and weights (or analytical
formula).
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System property

Model

∂tM+ ∂xF (M) = 0 (4)

Moment vector: M = (M0,M1,M2,M3,M4)t

Flux F (M) = (M1,M2,M3,M4,M
5
)t

Closure

fG
M

(u) =
2∑

α=1

ρα

σ
√

2π
exp

− (u − uα)2

2σ2


with ρ1, ρ2, u1, u2 and σ tels que

∀j ∈ {0, 1, 2, 3, 4}
∫
R

uj fG(u)du = M j

and
M

5
=

∫
R

u5fG(u)du

Théorème

Assuming thatM = (M0,M1,M2,M3,M4)t lives in Ω, then the system (4) is
hyperbolic.
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Numerical scheme

Kinetic Flux-Splitting scheme

Finite volumes:

Mn
c =

1
∆x

∫ xc+1/2

xc−1/2

M(tn, x)dx

Conservative

Mn+1
c =Mn

c −
∆t
∆x

(Fc+1/2 − Fc−1/2)

Upwind scheme at the kinetic level

Flux splitting:
Fc+1/2 = F +

c+1/2 + F −c+1/2

(
F

+
c+1/2

)i
=

∫ ∞

0
fG
Mn

c
(u)ui+1du,

(
F −c+1/2

)i
=

∫ 0

−∞

fG
Mn

c+1
(u)ui+1du.

→ Realizability



High order moment methods in size
High order moment methods in velocity

Dealing with model coupling and asymptotic limits

Up to second order moment methods
Higher order moment methods
Multi-Gaussian model

Results - Riemann problem

1D Riemann problem

Two homogeneous sprays, initially at equilibrium, which are crossing.

Initial conditions

M0 = 1 e =
1
3

q = 0 η =
1
3

and

Um =
M1

M0
=

1 if x < 0,
−1 otherwise.

t = 0:

X=0 
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Results - Riemann problem

t = 0.5 : computed and reconstructed moments
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Results - Riemann problem

t = 0.5 : abscissas, weights, σ2
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Limiter on σ2 : abscissas are bounded with a neglectable effect on moments
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Multi-gaussien model - 2D case
Ingredients:

dimensionnal splitting
conditionnal quadrature [Yuan et al 2011] M i,j =

∫
v j f(v |u)

∫
ui f(u)dudv

Equations in the x direction
∂t M i,j + ∂xM i+1,j = 0

Set of moments
M0,0 M0,1 M0,2 M0,3 M0,4

M1,0 M1,1 M1,2 M1,3 M1,4

M2,0 M2,1

M3,0 M3,1

M4,0 M4,1

 .
Kinetic description

f12(t , x, u, v) =
2∑

α=1

2∑
β=1

ραραβg(u; uα, σ1)g(v; vαβ, σ2α),

with the Gaussian function: g(u; µ, σ) =
1

σ
√

2π
exp

(
−

(u − µ)2

2σ2

)
.

→ computation of three 1D multi-gaussian closures

→
Hyperbolic
system
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Multi-gaussien model - 2D case
Ingredients:

dimensionnal splitting
conditionnal quadrature [Yuan et al 2011] M i,j =

∫
v j f(v |u)

∫
ui f(u)dudv

Equations in the x direction
∂t M i,j + ∂xM i+1,j = 0

Set of moments
M0,0 M0,1 M0,2 M0,3 M0,4

M1,0 M1,1 M1,2 M1,3 M1,4

M2,0 M2,1

M3,0 M3,1

M4,0 M4,1

 .
Kinetic description

f12(t , x, u, v) =
2∑

α=1

2∑
β=1

ραραβg(u; uα, σ1)g(v; vαβ, σ2α),

with the Gaussian function: g(u; µ, σ) =
1

σ
√

2π
exp

(
−

(u − µ)2

2σ2

)
.

→ computation of three 1D multi-gaussian closures

→
Hyperbolic
system
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Results - numerical comparisons on a 2D HIT

St = 5

St = 10

Good agreement
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Main goal

Eulerian Large Eddy Simulation
of turbulent polydisperse two-phase flows

Turbulence DNS and LES

Trajectory crossings

Subgrid scale motion

Polydispersion

Evaporation

Coalescence,
break-up

Drag force

Transport

Numerical methods

Realizable

Robust

Arbitrary elements

High order
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Two-phase flow modeling

Williams-Boltzmann equation for the Number
Density Function (NDF)

∂f
∂t

+ vm
∂f
∂xm

+
∂

∂vm

(ug,m − vm

St
f
)

= 0

Eulerian description

Moments of the NDF Mijk =
∫

uiv jwk f(t , x, v)dv

System of conservation equations on moments
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Large Eddy Simulation

Why Large Eddy Simulation?

Because in industrial applications, Direct Numerical Simulations are unreachable,
due to the large spectrum of size and time scales in the flow.
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Large Eddy Simulation of disperse phase flows

The classical way: filtering at the moment level (Moreau et al. 2010)

Integration of the WBE in velocity to obtain the moment equations (ME)

Filtering of the moment equations

WBE
∂f
∂t

+ vm
∂f
∂xm

+
∂

∂vm

(ug,m − vm

St
f
)

= 0

ME
∂M i

∂t
+

∂

∂x

(
M i+1

)
= −

i
St

(
M i − ugM i−1

)
filtered ME

∂M
i

∂t
+

∂

∂x

(
M

i+1
)

= −
i

St

(
M

i
− ugM

i−1
)

Problem

Designing realizable numerical methods is difficult, as the structure of the
resulting system of equations is difficult to determine.
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Large Eddy Simulation of disperse phase flows
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Large Eddy Simulation of disperse phase flows

An other way: filtering at the kinetic level (Reeks 1991, Zaichik et al. 2009)

Filtering of the kinetic equation

Integration of the filtering WBE in velocity to obtain the moment equations

WBE
∂f
∂t

+ vm
∂f
∂xm

+
∂

∂vm

(ug,m − vm

St
f
)

= 0

filtered WBE
∂f
∂t

+ cp
∂f
∂x

+
∂

∂cp

[
ug − cp

St
f
]

=
∂

∂cp

λ ∂f
∂x

+ µ
∂f
∂cp


filtered ME

∂M
i

∂t
+

∂

∂x

(
M

i+1
+ iλM

i−1
)

= −
i

St

(
M

i
− ugM

i−1
− (i − 1)StµM

i−2
)

Good news

This method leads to an hyperbolic system of equations with source terms, with a
well-defined underlying kinetic equation, really helpful to design realizable
methods. PhD Macole Sabat 2015, Sabat et al 2015
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Gaussian closure and 3-equation system

∂M
i

∂t
+

∂

∂x

(
M

i+1
+ iλM

i−1
)

= −
i

St

(
M

i
− ugM

i−1
− (i − 1)StµM

i−2
)

Closure problem

For a given set of moments M0,...,N , the moment
MN+1 is needed.
Here we propose to use a Gaussian closure:

f(t , x, cp) =
ρ(t , x)√
4πε(t , x)

exp

− (cp − u(t , x))2

4ε(t , x)


for which 3 parameters are needed: ρ, u and ε.

Interest of the Gaussian closure for two-phase
flows

Capture primary aspects trajectory crossings
that occurs in turbulent flows
Enable to simulate turbulent flows at Stokes
numbers close to 1
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Gaussian closure and 3-equation system

Euler-like system of equations

∂ρ

∂t
+
∂ρu
∂x

= 0

∂ρu
∂t

+
∂ρu2 + P

∂x
= −

ρ(u − ug)

St
∂ρE
∂t

+
∂ρuE + P

∂x
= −

ρu(u − ug)

St
−
ρ(2ε − Stµ)

St

where:

ρ = M0, ρu = M1, ρE =
1
2

M2, ρε = M2 −M0u2, P = 2ρε + ρλ

The subgrid scale influence is seen on the source terms as well as on the pressure
law
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Asymptotic behavior

Considering the expression of λ and µ:

λ =
τg

St(1 + St)
, µ =

τg

St(1 + St)
where τg is the subgrid scale energy of the gas phase.

Sound speed

The sound speed tends to infinity when St tends to 0:

c =
√

6ε + 3λ −→
St→0

∞

One may want to treat the acoustic part implicitly

Asymptotic equation on the density

For low Stokes number, we obtain a diffusion equation on the number density

∂ρ

∂t
+
∂ρug

∂x
=

∂

∂x

(
Stλ

∂ρ

∂x

)
The velocity and the internal energy are then written:

u = ug −
Stλ
ρ

∂ρ

∂x
, ε =

St
2

(
µ − λ

∂u
∂x

)
One may want to recover the asymptotic behavior - not natural for classical schemes
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Asymptotic behavior / model coupling

In the zones of the flow where τg = 0 and thus λ = µ = 0, when no particle trajectory
crossing is present, we should solve for

PGD system of equations

∂ρ

∂t
+
∂ρu
∂x

= 0

∂ρu
∂t

+
∂ρu2

∂x
= −

ρ(u − ug)

St
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Outline

1 High order moment methods in size, with realizable and accurate numerical
methods

2 High order moment methods in velocity, with realizable and accurate
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Up to second order moment methods (statistical crossing)
Higher order moment methods (deterministic crossing)
Multi-Gaussian model

3 Dealing with model coupling and asymptotic limits
A Hybrid model and related relaxation scheme
An Asymptotic-Preserving Relaxation scheme
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A relaxation scheme for PGD

Without the drag, the PGD system can be seen as the limit as η→ +∞ of the
system:

Relaxed Euler system of equations

∂ρ

∂t
+
∂ρu
∂x

= 0

∂ρu
∂t

+
∂ρu2 + P

∂x
= −

ρ(u − ug)

St
∂ρE
∂t

+
∂ρEu + Pu

∂x
= −

ρu(u − ug)

St
− ηρε

and we solve the convective part of the pressure relaxation model taking η = 0
∂tρ + ∂x(ρu) = 0,
∂t (ρu) + ∂x(ρu2 + Π) = 0,
∂t (ρE) + ∂x(ρEu + Πu) = 0,
∂t (ρΠ) + ∂x(ρΠu + a2u) = 0,

∂tV+ ∂xG(V) = 0. (5)
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A relaxation scheme for PGD

We then solve 
∂tρ = 0,
∂t (ρu) = 0,
∂t (ρE) = 0,
∂t (ρΠ) = ηρ(p − Π),

in the asymptotic regime η→ ∞. The conservative variables ρ, ρu and ρE are
thus constant, while Π is set to be equal to p in this step.
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A relaxation scheme for PGD

We now give the Riemann solution. We propose to take a nonconstant in the
Riemann solution and we choose to solve

∂t a + u ∂xa = 0. (6)

The diagonal form is given by

∂t (Π + au) + (u + aτ)∂x(Π + au) = 0,
∂t (Π − au) + (u − aτ)∂x(Π − au) = 0,
∂t (Π + a2τ) + u ∂x(Π + a2τ) = 0,
∂t (ε −

Π2

2a2 ) + u ∂x(ε − Π2

2a2 ) = 0,
∂t a + u ∂xa = 0.

The quantities (Π ± au), respectively (Π + a2τ), (ε − Π2

2a2 ) and a, are (strong)
Riemann invariants for the eigenvalues u ± aτ, resp. u.
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A relaxation scheme for PGD

The self-similar Riemann solution (x, t) 7→ V(x/t ;VL ,VR ; aL , aR ) and initial data

V(x, t = 0) =

{
VL if x < 0,
VR if x > 0,

is made of four constant statesVL ,V∗L ,V∗R andVR , separated by three contact
discontinuities associated with λk = λk (V), k = 1, 2, 3 and propagating with
speeds denoted by λ(VL ,V

∗
L ), λ(V∗L ,V

∗
R ) and λ(V∗R ,VR ). More precisely, we

have

V(
x
t

;VL ,VR )=


VL if x

t < λ(VL ,V
∗
L ),

V∗L if λ(VL ,V
∗
L ) < x

t < λ(V∗L ,V
∗
R ),

V∗R if λ(V∗L ,V
∗
R ) < x

t < λ(V∗R ,VR ),
VR if λ(V∗R ,VR ) < x

t .
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A relaxation scheme for PGD

The intermediate statesV∗L ,V∗R , as well as the speeds of propagation, are
determined and yield: λ(VL ,V

∗
L ) = λ1(VL ) = uL − aLτL , λ(V∗L ,V

∗
R ) = u∗,

λ(V∗R ,VR ) = λ3(VR ) = uR + aRτR and

u∗L = u∗R = u∗ =
aL uL + aRuR + ΠL − ΠR

aL + aR
,

Π∗L = Π∗R =
aR ΠL + aL ΠR − aL aR (uR − uL )

aL + aR
,

1
ρ∗L

=
1
ρL

+
aR (uR − uL ) + ΠL − ΠR

aL (aL + aR )
,

1
ρ∗R

=
1
ρR

+
aL (uR − uL ) + ΠR − ΠL

aR (aL + aR )
,

ε∗L = εL −
Π2

L

2a2
L

+
Π∗2

2a2
L

, ε∗R = εR −
Π2

R

2a2
R

+
Π∗2

2a2
R

.

At this stage, the initial statesVL andVR and more precisely the free
parameters aL and aR are implicitly assumed to be such that the waves in the
Riemann solutions are ordered as they should, namely

λ1(VL ) = uL −
aL

ρL
< u? < λ3(VR ) = uR +

aR

ρR
. (7)
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A relaxation scheme for PGD

Following Bouchut (2004), we define aL = aL (VL ) and aR = aR (VR ) as follows:
if pR ≥ pL

aL

ρL
= max(cL , cmin) + α(

pR − pL

ρRcR
+ uL − uR )+,

aR

ρR
= max(cR , cmin) + α(

pL − pR

aL
+ uL − uR )+,

if pR ≤ pL
aR

ρR
= max(cR , cmin) + α(

pL − pR

ρL cL
+ uL − uR )+,

aL

ρL
= max(cL , cmin) + α(

pR − pL

aR
+ uL − uR )+,

with α = (γ + 1)/2, cmin > 0 and where pL ,R = pL ,R (UL ,R ), cL ,R = cL ,R (UL ,R ).

First, it is shown to fullfil (7) and to give the positivy of the intermediate densities
ρ∗L and ρ∗R . Then, it complies with the sub-characteristic condition a > ρc. At last,
it guarantees the nonlinear stability of the underlying relaxation scheme that will
be described in the following, and the possibility of handling vacuum in the sense
that the speeds of propagation λ1(VL ) and λ3(VR ) remain finite. Discrete
entropy inequalities as well as maximum principles can be proved.
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A Hybrid model and related relaxation scheme

It is important to notice that the same formalism will be used for both systems.
Just note that in the pressureless case, E must be understood as a function of
the unknowns ρ and ρu, namely

E =
(ρu)2

2ρ
,

but not as an unknown with evolution given by the passive transport equation

∂tρE + ∂x(ρEu) = 0.

We use a Godunov scheme for the first step before projection:

V
n+1−
j = Vn

j −
∆t
∆x

(g(Vn
j ,V

n
j+1) − g(Vn

j−1,V
n
j )),

j ∈ Z, n ≥ 0,

where the numerical flux function writes for all j ∈ Z

g(Vn
j ,V

n
j+1) = G

(
V

(
0;Vn

j ,V
n
j+1; aL (Vn

j ), aR (Vn
j+1)

))
. (8)

Let us recall that the numerical flux (8) is here explicitly known.
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A Hybrid model and related relaxation scheme

We set for all j ∈ Z

V
n+1
j =

(
U

n+1
j

(ρΠ)n+1
j

)
(9)

with
U

n+1
j = Un+1−

j and (ρΠ)n+1
j = p(Un+1

j )

in the case of the gas dynamics equations, and

U
n+1
j = (ρ, ρu,

(ρu)2

2ρ
)n+1−

j and (ρΠ)n+1
j = 0

in the pressureless case. This is equivalent to solve in the asymptotic regime
η = +∞ 

∂tρ = 0,
∂t (ρu) = 0,
∂t (ρE) = 0,
∂t (ρΠ) = −ηρ(p − Π),

(10)

in the case of the gas dynamics equations, and for PGD:
∂tρ = 0,
∂t (ρu) = 0,
∂t (ρE) = −ηρε,
∂t (ρΠ) = −ηρ(p − Π),

(11)
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A Hybrid model and related relaxation scheme

Recall that the conservative unknowns are ρ, ρu and ρE for the gas dynamics
and ρ and ρu for the PGD. The main difference then clearly lies in the treatment
of the energy equation.

For the sake of clarity, we begin by introducing a color function Y such that Y = 1
for gas dynamics and Y = 0 for PGD. From a numerical point of view, a given cell
Cn

j is said to be pressureless, Yn
j = 0, if the internal energy εn

j = (ρE − (ρu)2

2ρ )n
j is

less than a given threshold εmin, and with pressure, Yn
j = 1, otherwise.

In agreement with the threshold cmin already introduced for the sound speed in
the definition of aL and aR , we set

εmin =
c2

min

γ(γ − 1)
. (12)

We thus distinguish between zones with PGD where the internal energy is exactly
zero and zones where the energy level is above the defined small threshold, a
property which is preserved by the pure convective part of the evolution.
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A Hybrid model and related relaxation scheme : Results

Pressureless gas dynamics: no subgrid energy source
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Hybrid scheme: subgrid energy source in the center layer
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A Hybrid model and related relaxation scheme

Hybrid scheme: original way of coupling pressureless and gas dynamics

(or high order KBMM - AG)

with accurate transport of number density and velocity

Boileau, Chalons, Massot, SIAM SISC, 2015 - HAL
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Outline

1 High order moment methods in size, with realizable and accurate numerical
methods

2 High order moment methods in velocity, with realizable and accurate
numerical methods

Up to second order moment methods (statistical crossing)
Higher order moment methods (deterministic crossing)
Multi-Gaussian model

3 Dealing with model coupling and asymptotic limits
A Hybrid model and related relaxation scheme
An Asymptotic-Preserving Relaxation scheme
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Gaussian closure and 3-equation system

Euler-like system of equations

∂ρ

∂t
+
∂ρu
∂x

= 0

∂ρu
∂t

+
∂ρu2 + P

∂x
= −

ρ(u − ug)

St
∂ρE
∂t

+
∂ρuE + P

∂x
= −

ρu(u − ug)

St
−
ρ(2ε − St µ(St))

St

where:

ρ = M0, ρu = M1, ρE =
1
2

M2, ρε = M2 −M0u2, P = 2ρε + ρλ(St)

The subgrid scale influence is seen on the source terms as well as on the pressure
law
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Asymptotic behavior

Considering the expression of λ and µ:

λ =
τg

St(1 + St)
, µ =

τg

St(1 + St)
where τg is the subgrid scale energy of the gas phase.

Sound speed

The sound speed tends to infinity when St tends to 0:

c =
√

6ε + 3λ −→
St→0

∞

One may want to treat the acoustic part implicitly

Asymptotic equation on the density

For low Stokes number, we obtain a diffusion equation on the number density

∂ρ

∂t
+
∂ρug

∂x
=

∂

∂x

(
Stλ

∂ρ

∂x

)
The velocity and the internal energy are then written:

u = ug −
Stλ
ρ

∂ρ

∂x
, ε =

St
2

(
µ − λ

∂u
∂x

)
One may want to recover the asymptotic behavior - not natural for classical schemes
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An Asymptotic-Preserving Relaxation scheme

Main ingredients of the numerical scheme

Chalons, Girardin and Kokh, 2014 SISC

Lagrange-Projection Coquel and al., 2010

Relaxation strategy Chalons and Coquel, 2005

HLLC scheme with source terms Gallice 2003, Chalons et al. 2010
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Lagrange-Projection

Principles

Idea: Separate the acoustic waves from the transport velocity
Design principle: Splitting of the fluxes

Lagrangian step: implicit or explicit step

∂ρ

∂t
+ ρ

∂u
∂x

= 0

∂ρu
∂t

+ ρu
∂u
∂x

+
∂P
∂x

= −
ρ(u − ug)

St
∂ρE
∂t

+ ρE
∂u
∂x

+
∂Pu
∂x

= −
ρu(u − ug)

St
−
ρ(2ε − Stµ)

St

Transport step: explicit step

∂ρ

∂t
+ u

∂ρ

∂x
= 0

∂ρu
∂t

+ u
∂ρu
∂x

= 0

∂ρE
∂t

+ u
∂ρE
∂x

= 0

The lagrangian step is written in lagrangian coordinates τ = 1/ρ and τ∂x = ∂m

∂τ

∂t
−
∂u
∂m

= 0

∂u
∂t

+
∂P
∂m

= −
(u − ug)

St
∂E
∂t

+
∂Pu
∂m

= −
u(u − ug)

St
−

(2ε − Stµ)

St
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Relaxation strategy

Principles

Idea: Deal with a larger system but with a simpler structure, avoiding
non-linearities
Design principle: Consider P as a new unknown of the system that we denote Π

At the beginning of each time step, we
impose that Π = p:

∂τ

∂t
−
∂u
∂m

= 0

∂u
∂t

+
∂Π

∂m
= −

(u − ug)

St
∂E
∂t

+
∂Πu
∂m

= −
u(u − ug)

St
−

(2ε − Stµ)

St
∂Π

∂t
+ a2 ∂Π

∂m
= 0

where a > ρc.

Adding the change of variable w± = Π ± au:

∂τ

∂t
−
∂u
∂m

= 0

∂w+

∂t
+ a

∂w+

∂m
= −

(u − ug)

St
∂w−

∂t
− a

∂w−

∂m
=

(u − ug)

St
∂E
∂t

+
∂Πu
∂m

= −
u(u − ug)

St
−

(2ε − Stµ)

St
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HLLC with source terms

Principles

Idea: Tacking into account the source terms in the intermediate state of the HLLC
scheme
Design principle: the source term is evaluated at the interfaces, instead of the cell
centers

∂t U + ∂xF (U) = S (U)

where:

U =
(
τ,
−→w ,←−w ,E

)T
, F(U) =

(
u, a−→w ,−a←−w ,Πu

)T
,

S(U) =

(
0,−

u − ug

St
,

u − ug

St
,−u

u − ug

St
−

2ε − Stµ
St

)T
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HLLC scheme with source terms

Four-state approximation

W(
m
t

; UL ,UR ) =


UL ,

m
t < −a

U∗L , −a < m
t < 0

U∗R , 0 < m
t < a

UR ,
m
t > a

Consistency in the integral sense with source terms

∫ ∆x/2

−∆x/2
W(x; UL ,UR )dx =

∆x
2

(UL + UR ) −∆t(FL + FR ) + ∆t∆xS̃(UL ,UR )

where:
lim

UL ,UR → U
∆t ,∆x → 0

S̃(∆x,∆t ; UL ,UR ) = S(U)

Using Rankine-Hugoniot relationships, all the states are defined
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Final scheme

Un+1
j = Un

j −
∆t

∆mj

(
Fn

j+1/2 − Fn
j−1/2

)
+

∆t
2

(
∆mj+1/2

∆mj
Sn

j+1/2 +
∆mj−1/2

∆mj
Sn

j−1/2

)
+ ∆tSE−n

j

where:

Fn
j+1/2 =


u∗j+1/2

aw+,∗
j+1/2

−aw−,∗j+1/2

p∗j+1/2u∗j+1/2

 , Sn
j+1/2 =



0

−
a
St

(
u∗j+1/2 − ug

)
a
St

(
u∗j+1/2 − ug

)
−u∗j+1/2

St

(
u∗j+1/2 − ug

)


, SE−n

j =


0
0
0

1
St

(
2εn

j − Stµ
)


u∗j+1/2 =
1

2a +
∆mj+1/2

St

(
a
(
un

j+1 + un
j

)
−

(
Πn

j+1 − Πn
j

)
+

∆mj+1/2

St
ug

)

p∗j+1/2 =
Πj+1 + Πj

2
−

a
(
un

j+1 − un
j

)
2
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Projection step

The last step of the scheme is the projection step, which corresponds to the
evolution to to material waves. This step is done in an explicit manner to keep
accuracy. Considering X = (ρ, ρu, ρE)T , the projection step is:

Xn+1
j = Xn

j +
∆t
∆x

[
u∗,+j−1/2Xn

j−1 +
[
u∗,−j+1/2 − u∗,+j−1/2

]
Xn

j − u∗,−j+1/2Xn
j+1

]
where α± = (α ± |α|)/2.
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Finally

We have

A Lagrange-Projection scheme that allows to separate acoustic and material
waves, and to apply an implicit treatment on acoustic waves and an explicit
treatment on material waves (to keep a good precision)
A relaxation scheme that simplify the structure of the hyperbolic system
resulting from the Lagrange-Projection
A HLLC scheme that account for source terms at the interfaces

It leads to an optimal scheme that takes the better of existing strategies to
overcome the problem raised by the asymptotic limits of our modeling
approach

Theorem

Under the CFL condition and with sufficiently large a, the implicit-explicit in time
numerical scheme is well defied and satisfies the stability properties :

It is a conservative scheme for the density, as well as for velocity and energy
when the source terms are omitted;
the density is positive for all times provided that the initial density is positive;
the scheme is asymptotic preserving.
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The test case

Dispersion of a droplet cloud in a turbulent gas field

Test case proposed in Hyland et al. 1999

Exact analytical solutions of the dispersion of a Dirac δ-function in the phase
space (both in space and velocity)

1D and 2D cases

time-evolving coefficients

Here:

1D cases

equilibrium coefficients (constant in time)

Physics of the test case

The initial droplet cloud is spread by the subgrid-scale of the gas phase

the density gradients generate droplet fluxes through λ, due to the
correlations imposed by the turbulence

µ tends to relax the particle energy towards the gas subgrid energy
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The test case

Initial and Boundary conditions

Gaussian spatial distribution:

ρ0(x) = 1 + exp
(
− x2

2(σ0
x )2

)
where σ0

x = 0.05

Zero initial velocity or internal energy for the
disperse phase: u0 = 0 and ε0 = 0

No mean gas velocity but non-zero subgrid
energy: ug = 0, τg = 0.1

Dirichlet Boundary condition:
U(t , x = −2) = U(t = 0, x = −2),
U(t , x = 2) = U(t = 0, x = 2)

Numerical parameters

CFL = 0.5, ∆t = min(∆tconv ,St/2)

Analytical solution of the diffusion equation

ρ(t , x) = 1 +
σ0

x

σx (t)
exp

(
− x2

2σx (t)2

)
σx (t) = σ0

x +
√

2τg t

u(t , x) = ug −
Stλ
ρ

∂ρ(t , x)

∂x

ε(t , x) =
St
2

(
µ − λ

∂u(t , x)

∂x

)
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Effect of Stokes number: Ncell = 100, Stokes number=10−1
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Effect of Stokes number: Ncell = 100, Stokes number=10−2
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Effect of Stokes number: Ncell = 100, Stokes number=10−3
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Effect of Stokes number: Ncell = 100, Stokes number=10−4
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Effect of discretization: Stokes number=10−4, non AP scheme
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Effect of discretization: Stokes number=10−4, AP scheme
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Implicit-Explicit formulation

1 0 1
1

1.05

1.1

1.15

1.2

1.25

 x

 

1 0 1
0.08

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

 x

 u

1 0 1
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

 x

 

 

 

analytic
EE
IE 10  t
IE 20  t



High order moment methods in size
High order moment methods in velocity

Dealing with model coupling and asymptotic limits

A Hybrid model and related relaxation scheme
An Asymptotic-Preserving Relaxation scheme

Error on the density
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While using a bigger time step, the Implicit-Explicit scheme gives really accurate
results, where the non AP scheme needs a fine mesh to reach accurate results
(Chalons, Massot, Vié - SIAM MMS 2015).
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Conclusions

Conclusions - Coupling PGD/Euler

A hybrid relaxation scheme has been derived, which can handle
automatically the interface between the two models

Second order in time and space can be achieved and PGD with accurate
resolution can be used in zones where neither crossing nor subgrid agitation
is to be found

Can handle energy created by crossing

Conclusions - AP

The AP Relaxation scheme of Chalons et al. have been extended to LES of
disperse phase flows using the gaussian closure

The results show the necessity of AP schemes, to keep a reasonable error
regarding the asymptotic limit of the equations

Moreover, the Implicit-Explicit formulation notably reduces the computational
time, keeping the error an order of magnitude lower than a non AP scheme
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Perspectives

Coupling of PGD with higher order velocity moment methods

Anisotropic Gaussian (Cordier et al. 2014)

Extension of the AP scheme to systems adapted to higher Stokes number

Higher order kinetic-based moment methods - Anisotropic Gaussian (Vié et
al. 2015)

Quadrature-based moment methods (Yuan and Fox, 2010, Kah et al 2010,
Chalons et al 2012), Multi-Gaussian (Chalons et al. 2010, Vié et al 2014)

Extension to unstructured grids

Convex-State-Preserving Discontinuous Galerkin methods applied to PGD
and Euler-like equations (Larat et al. 2012, Sabat et al. 2014)

How such an Asymptotic-Preserving strategy can be applied on
unstructured grids?
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