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46 3. Subgroups 

FIGURE 3.2. A Six-Joint Robot—the PUMA 

3.7 Robot Kinematics 

We have seen above that the Reuleaux pairs can be used as joints between the 
rigid members of a mechanism. For robot arms, it is usual to have six members 
connected in series by six one-parameter joints. The joints are often revolute 
joints but can also be prismatic and more rarely even helical. One-parameter 
joints are chosen because they are easy to drive—a simple motor for a revolute 
joint or a hydraulic ram for a prismatic joint. The number of joints is six so 
that the end-effector, or gripper, has six degrees of freedom: three positional 
and three orientational. This, of course, corresponds to the dimensionality of 
the group of rigid body transformations SE{3). Redundant robots, with more 
than six joints, have been built for special purposes. The end-effector still has 
six degrees of freedom, but now the machine has more flexibility but at the cost 
of a harder control problem. 

Consider an ordinary six-joint robot; see Figure 3.2 for example. Suppose we 
know the joint variables (angles or lengths) for each joint. How can we work 
out the position and orientation of the end-effector? This problem is called the 
forward kinematic problem for the robot. The solution is straightforward. 
First, we choose a 'home' configuration for the robot. In this position, all the 
joint variables will be taken as zero. The final position and orientation of the 
end-effector will be specified by giving the rigid transformation that takes the 
end-effector from its home position and orientation to its final configuration. 
Let us call this transformation K{6), where 9 = {01,62^0^^64^,O^^OQ)^ shows 
the dependence on the joint variables. The first joint, ^1, is the one nearest the 
base, the next joint along the arm has variable 62^ and so on, until the last; the 
one nearest the end-effector which has joint variable 6Q. 

Robot arm with six joints



Euclidean motions:

SE(3) = {q : x 7→ Ax + b}

x ∈ R3, A ∈ SO(3), b ∈ R3.



1 // R3 � � // SE(3)
π // SO(3) // 1

q

� R3
affine

� π // π(q)

� R3
linear

“macro”: π(q) is “q viewed from far away”.

“micro”: ∀x TxR3
affine = R3

linear; π(q) = dq|x .



Lower Reuleaux pairs: spherical, planar, cylindrical, revolute, prismatic, screw



Connected subgroups G of SE(3):

1 K︸︷︷︸
=G∩R3

G π(G )︸ ︷︷ ︸
= 1 or S1 or SO(3)

1// � � // // //
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Table 2.1: Categories of displacement subgroups [38, 71]

Dim. Subgroups of SE(3)/displacement subgroups

6 SE(3) = SO(3)�R3

freea

4 SE(2)× R
planar+prismaticb

3 SE(2) = SO(2)�R2

planar
SO(3)
ball (spherical)

R3

3-d.o.f. prismatic
Hp �R2

helical + 2-d.o.f. prismaticc

2 SO(2)× R
cylindricald

R2

2-d.o.f. prismatic
1 SO(2)

revolute
R
prismatic

Hp

helical
0 {e}

fixeda

a These two subgroups are the trivial subgroups of SE(3).
b The axis of the prismatic joint is always perpendicular to the plane of the planar joint.
c The axis of the helical joint is always perpendicular to the plane of the 2-d.o.f. prismatic joint.
d The axis of the revolute and prismatic joints are always aligned.

Since this proposition is proved by coordinate chart assignment, its proof is presented

in Section 2.4.

Definition 2.1.4. Let ϕ be a coordinate chart for a neighbourhood of ei. By Propo-

sition 2.1.3 any relative configuration manifold Qj
i of a displacement subgroup can be

parametrized by vectors s ∈ Rk, called screw joint parameters, such that every rji ∈
Qj

i ⊆ P j
i can be expressed as

rji = exp(τ ji s) ◦ rji,0 := exp
�
(Adrji,0

)(Teiι)(T0ϕ)s
�
◦ rji,0, (2.1.2)

where ι : Qi → Pi is the inclusion map.

Therefore, for a relative motion rji : [0, 1] → Qj
i the relationship between (s, ṡ), which

are the screw joint parameters and their speeds, and (q, q̇), which are the classic joint

parameters and their speeds, can be summarized in the following theorem. In this the-

orem, ∀η ∈ Lie(Qj) adη : Lie(Qj) → Lie(Qj) is the endomorphism of Lie(Qj) such

that ∀ξ ∈ Lie(Qj) we have adη(ξ) := [η, ξ] [41]. The linear map Z(s) (defined in The-

orem 2.1.5) is an isomorphism between T0Rk and TqRk if and only if adT0ϕ(s) has no

eigenvalue in 2πiZ, where i =
√
−1.

Theorem 2.1.5. For a displacement subgroup, consider a coordinate chart for Qi, ϕ : Rk ⊃
U → W such that ϕ([0, ..., 0]T ) = ei, and a relative motion rji : [0, 1] → Qj

i in the neigh-

bourhood of rji,0, denoted by W � := Lrji,0
(W ) ⊆ Qj

i . Then, rji (t) = exp(τ ji s(t)) ◦ rji,0 where



One parameter subgroups

(R,+) // SE(3)





{
one-parameter subgroups

(R,+)→ SE(3)

}
=

{
screws

}

se(3) = {twists}
se(3)∗ = {wrenches}



Chasles’s Theorem:

Every Euclidean motion in 3-d is a screw motion.



Proof of Chasles’s theorem.

q ∈ SE(3) 7→ π(q) ∈ SO(3).

π(q) = Id ⇒ q is a translation.

π(q) 6= Id
Euler⇒ π(q) is a rotation about line ` ⊂ R3

linear

⇒ q descends to
(
q

� R3
affine/`

)
∈ SO(2);

q is a rotation about x = x + ` ∈ R3
affine/`

⇒ q is a screw motion about x + ` ⊂ R3
affine.



Dynamics.

Lagrangian = Kinetic energy︸ ︷︷ ︸∑
particles

mv2

2

−Potential energy︸ ︷︷ ︸
assume =0

Configuration space: Q = {q}.
Velocity phase space: TQ = {(q, q̇)}, q̇ ∈ TqQ.

Lagrangian: TQ → R.



Time evolution: {qt}a≤t≤b, path in Q.

prolongation
// {(qt , q̇t)}a≤t≤b, path in TQ.

Principle of stationary action: δ
∫ b
a L(q, q̇)dt = 0

⇒ Euler-Lagrange equations

∂L

∂q
=

d

dt

∂L

∂q̇



Rigid body.

Configuration space: Q ∼= SE(3)

infinitesimal motion: q̇ ∈ TeSE (3) = se(3),
a vector field on R3:

q̇|x = ẋ .

Kinetic energy =
1

2

∫
x∈body

|ẋ |2 dρ(x)︸ ︷︷ ︸
mass density

= “
∑

particles

mv2

2
”


= K (q̇, q̇)

where K (q̇1, q̇2) =

∫
x∈body

〈q̇1|x , q̇2|x〉dρ(x)



Q ∼= SE(3); Kinetic energy = K (q̇, q̇);

K (·, ·) an inner product on se(3)

// 6× 6 “generalized inertia matrix”;

Lagrangian = norm-squared: TQ → R

for left invariant Riemannian metric.



Lie groupoid.

G0 objects
G1 arrows

}
manifolds

s : G1 → G0 source map
t : G1 → G0 target map

}
submersions

h, g 7→ h · g multiplication on G1

defined when t(g) = s(h)

}
associative

units: G0 → G1, a 7→ 1a
inverses: G1 → G1, g 7→ g−1

}
smooth



Multibody system

Objects: the bodies B1, . . . ,BN .

Ai an affine space “attached to Bi”.

Arrows from i to j : {r ji : Ai
Euclidean

// Aj }
= { relative poses of Bi with respect to Bj }
“homing”∼= SE(3)


