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Hyperkähler manifolds

Definition

A hyperkähler manifold is a manifold M equipped with three
symplectic structures ω1, ω2, ω3. These are organized as ωR = ω1

(real moment map) and ωC = ω2 + iω3 (complex moment map).
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Definition

Hyperkähler quotient: If a compact Lie group G acts on M and
the action is Hamiltonian with respect to all three symplectic
structures, (with moment maps µ1, µ2, µ3) then the hyperkähler
quotient is defined as M///G = (µHK )

−1(0)/G where
µHK = (µ1, µ2, µ3). (by analogy with the Kähler quotient
M//G := µ−1(0)/G ) where µ is the moment map).
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Definition

Hyperkähler quotient: If a compact Lie group G acts on M and
the action is Hamiltonian with respect to all three symplectic
structures, (with moment maps µ1, µ2, µ3) then the hyperkähler
quotient is defined as M///G = (µHK )

−1(0)/G where
µHK = (µ1, µ2, µ3). (by analogy with the Kähler quotient
M//G := µ−1(0)/G ) where µ is the moment map).

HK quotients are closely related to problems in gauge theory
(instantons, for example the ADHM construction) and string
theory (supersymmetric sigma models).



Examples

Hypertoric varieties are hyperkähler analogues of toric varieties,
and in particular their holomorphic symplectic structures are
completely integrable (Bielawski-Dancer, Konno, Hausel-Sturmfels)

Hyperpolygon spaces are hyperkähler analogues of moduli spaces
of euclidean n-gons, and are related to certain Hitchin systems on
CP

1 (Konno, Hausel-Proudfoot, Harada-Proudfoot,
Godinho-Mandini, Fisher-Rayan)

Nakajima quiver varieties are hyperkähler manifolds associated
to quivers, used to construct moduli spaces of Yang-Mills
instantons as well as representations of Kac-Moody algebras
(Atiyah-Hitchin-Drinfeld-Manin, Kronheimer, Nakajima)



Definition

◮ Suppose M is a symplectic manifold equipped with
Hamiltonian G action. The Kirwan map is the map (where
H∗

G
denotes equivariant cohomology).

κ : H∗

G (M) → H∗

G

(

µ−1(0)
)

∼= H∗(µ−1(0)/G )

(provided 0 is a regular value of the moment map).

◮ When M is compact, Kirwan proved that this map is
surjective.
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(provided 0 is a regular value of the moment map).

◮ When M is compact, Kirwan proved that this map is
surjective.

◮ Hyperkähler Hamiltonian actions never exist on compact HK
manifolds though.

◮ The hyperkähler Kirwan map is defined as

κHK : H∗

G (M) → H∗
(

µ−1
HK

(0)/G
)

where µHK = (µ1, µ2, µ3).



The Kirwan map

Our theorem is

Theorem

For a large class of Hamiltonian hyperkähler manifolds (those of
linear type)

◮ The hyperkähler Kirwan map is surjective, except possibly in
middle degree.

◮ The natural restriction H i (M//G ) → H i (M///G ) is an
isomorphism below middle degree and an injection in middle
degree.



The Kirwan map

Our theorem is

Theorem

For a large class of Hamiltonian hyperkähler manifolds (those of
linear type)

◮ The hyperkähler Kirwan map is surjective, except possibly in
middle degree.

◮ The natural restriction H i (M//G ) → H i (M///G ) is an
isomorphism below middle degree and an injection in middle
degree.

The second point means that the kernel (and hence image) of the
hyperkähler Kirwan map can be computed using standard
techniques.



Definition

M is circle compact if it is equipped with a Hamiltonian S1 action
for which

1. The fixed point set is compact

2. The S1 moment map is proper and bounded below



Definition

A G -action on a hyperkähler manifold M is said to be of linear
type if the following conditions are satisfied:

◮ M is circle compact and the S1-action commutes with the
G -action.

◮ Both M//G and M///G are circle compact with respect to
the induced S1-actions.

◮ The holomorphic symplectic form ωC and complex moment
map µC are homogeneous of positive degree with respect to
the S1-action, i.e. φ∗

tωC = tdωC and µC ◦ φt = tdµC for some
d > 0, where φt denotes the S1-action map.

◮ M is smooth and the line bundle L
M
(DM) is ample on M.



Theorem

Let G be a compact Lie group acting linearly on C
n. Then the

induced action of G on T ∗
C
n is of linear type.
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Theorem

Let G be a compact Lie group acting linearly on C
n. Then the

induced action of G on T ∗
C
n is of linear type.

Examples of manifolds of linear type: Hypertoric varieties,
hyperpolygon spaces, Nakajima quiver varieties.

Hyperkähler surjectivity was already known for hypertoric varieties
and hyperpolygon spaces (Konno). It is known for quiver varieties
only in certain special cases.
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M = M × C//cS
1

where c is a large real number. The boundary divisor is M rM.
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Definition

The cut compactification of a circle compact manifold M is the
manifold

M = M × C//cS
1

where c is a large real number. The boundary divisor is M rM.

Lemma

If M is circle compact, then the natural restriction
H∗(M) → H∗(M) is surjective.

Proof.

We have M
S1

= MS1
⊔ DM . It follows immediately from Morse

theory that we have the short exact sequence

0 −→ H∗−2
S1 (DM) −→ H∗

S1(M) −→ H∗

S1(M) −→ 0

The statement in ordinary cohomology then follows by equivariant
formality.



Remark

If M̄ is smooth, we have a Thom-Gysin sequence

· · · → H i−2(DM) → H i (M) → H i (M) → . . .



Theorem

If M is a hyperkähler manifold with a G-action of linear type, then
the Kirwan map κ : H∗

G
(M) → H∗(M//G ) is surjective.

Proof.

Consider the inclusion of M × C
∗ into M × C. We have

H∗

G×S1(M × C) H∗(M//G )

H∗

G×S1(M × C∗) H∗(M//G )

The right vertical arrow is surjective by the previous Lemma. The
top horizontal arrow is also surjective (by usual Atiyah-Bott-Kirwan
theory). The result follows because the S1 action on M × C∗ is
free, so H∗

G×S1(M × C
∗) ∼= H∗

G
(M).



Theorem

Let M be a hyperkähler manifold with a G-action of linear type
and suppose that 0 is a regular value of the real moment map.



Theorem

Let M be a hyperkähler manifold with a G-action of linear type
and suppose that 0 is a regular value of the real moment map.

◮ Then the natural restriction H i (M///G ) → H i (M///G ) is an
isomorphism below middle degree and an injection in middle
degree.



Theorem

Let M be a hyperkähler manifold with a G-action of linear type
and suppose that 0 is a regular value of the real moment map.

◮ Then the natural restriction H i (M///G ) → H i (M///G ) is an
isomorphism below middle degree and an injection in middle
degree.

◮ Furthermore, H i (M///G ) vanishes above middle degree.
Consequently, the hyperkähler Kirwan map is surjective except
possibly in middle degree, and its kernel is generated by
ker (H∗

G
(M) → H∗(M//G )) together with all classes above

middle degree.



Examples where surjectivity is known even in middle degree:
hyperpolygon spaces (Konno), hypertoric manifolds (Konno), torus
quotients of cotangent bundles of compact varieties (Fisher-Rayan
2014), Hilbert schemes of points on C2, Hilbert schemes of points
on hyperkähler ALE spaces, moduli space of rank 2 odd degree
Higgs bundles.
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singularities).
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quotients of cotangent bundles of compact varieties (Fisher-Rayan
2014), Hilbert schemes of points on C2, Hilbert schemes of points
on hyperkähler ALE spaces, moduli space of rank 2 odd degree
Higgs bundles.

Surjectivity fails for rank 2 even degree Higgs bundles (because of
singularities).

Using very different techniques, McGerty and Nevins have an
apparently stronger surjectivity result but their proof does not give
any information about the kernel of the HK Kirwan map



Proof of our main theorem.

The proof follows Bott’s proof of the Lefschetz hyperplane theorem
(1959, using Morse theory), working on the cut compactification
M (which is assumed to be smooth). It is analogous to Sommese’s
theorem for ample vector bundles.

Bott’s argument is applied to the logarithm of a product of
components of the moment map, making use of an inductive
argument on restriction to intersections of subsets (induction on
the number of subsets).
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◮ Hence the Thom-Gysin sequences for the inclusions
DM//G → M//G and DM///G → M///G split into short exact
sequences.

◮ Hence we obtain the commutative diagrams

0 H i−2(DM//G ) H i (M//G ) H i (M//G ) 0

0 H i−2(DM///G ) H i (M///G ) H i (M///G ) 0

◮ By our earlier result the middle vertical arrow is an
isomorphism for i below middle degree (and an injection in
middle degree).

◮ We also have that the left vertical arrow is an isomorphism
(for the same range of i). Hence so is the restriction
H i (M//G ) → H i (M///G ).


