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1. Preliminaries.

e X - an affine algebraic variety
over C (possibly singular)

e Oy - the algebra of regular func-
tions on X; O - the space of alge-
braic densities

e VectX = Der(Oy) - the Lie al-
gebra of vector fields on X

e g C VectX - a Lie subalgebra.

® (O )Y - the space of g-invariant
densities.

Main Question. When is (O%)?
finite dimensional? What is its di-
mension?

Main example. X is a Poisson
variety, g = HVectX is the Lie alge-
bra of Hamiltonian vector fields.

Note that (O )? = (Ox/g0x)",

so the main question is equivalent to
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the same question about the space of
coinvariants Ox /g0 x. In the main
example, this is the space

HPy(X) :=0x/{0x,0x},

called the zeroth Poisson homology
of X.

2. g-leaves and the main the-
orem.

In smooth or analytic geometry, a
g-leaf of a point x € X is defined
as the set of points which one can
reach from x moving along the vector
fields from g. We want to extend this
definition to the setting of algebraic
geometry.

To this end, define g, C T,X to
be the subspace spanned by special-
izations at x of vector fields from g,
and let X; be tYie set of z € X



such that dimg, = 2. Then X, is
locally closed in X, and each irre-
ducible component X; ; of X; has
dimension > i, since gy C 13X, ;
forall 2,7, z € X ;.

Proposition 0.1. Suppose that one
has dim X; ; =@ for all i,j. Then
Xi i are smooth and gy = 13X,
Joralli,j, v € X; ;.

Definition 0.2. In this situation,
we say that X; ; are the g-leaves of
X, and that X has finitely many
g-leaves. If X is Poisson and g =
HVect X then g-leaves are called sym-
plectic leaves.



Theorem 0.3. (E-Schedler, 2009)
If X has finitely many g-leaves,
then O x /g0 x is finite dimensional.
In particular, if X 1s Poisson and

has finitely many symplectic leaves
then H Py(X) is finite dimensional.

3. Examples. Here are some ex-
amples where this theorem applies.

Example 0.4. X is connected sym-
plectic of dimension n, g = HVect X.
In this case, X is the only symplectic
leaf, and HFPy(X) = H"(X,C) by
Brylinski’s theorem and Grothendieck’s
algebraic de Rham theorem.

Example 0.5. Let Y = X /G, where
X 1s as in the previous example, and



(G is a finite group of symplectomor-
phisms of X. Then the symplec-
tic leaves are the connected compo-
nents of the sets of points with a
oiven stabilizer, so there are finitely
many of them and the theorem says
that HPy(Y) is finite dimensional.
In the case when X = C2" and G C
Sp(2n,C), this was a conjecture of
Alev and Farkas, proved by Berest,
Ginzburg, and myself in 2004. The
dimension of H Py(Y") is unknown even
in this special case.

Example 0.6. Let Q(x,y,2) be a
polynomial, and X be the surface de-
fined by the equation

Q(x,y,ﬁz) = 0.



Suppose that () is quasihomogeneous

and 0 € X is an isolated singularity:.
Then

HP)(X) = Clz,y, 2] /(Qu, Qy, Q=)

the local ring of the singularity, which
is finite dimensional. Its dimension
is the Milnor number u of the singu-
larity.

This example extends to surfaces in
CN, N > 3, which are complete in-
tersections, as well as to complete in-
tersections of dimensions d > 2 (in
which case g is replaced by the Lie al-
oebra of divergence-free vector fields
arising from d — 2-forms).

Example 0.7. As a generalization
of the previous example, consider the
case when () is any polynomial (not



necessarily quasihomogeneous), such
that X has isolated singularities.

Proposition 0.8. One has
HPRy(X) = H*(X,C) & T,

where the sum is over singular points
of X, and s is the Milnor number

of s.

Example 0.9. Let () be quasiho-
mogeneous, and consider the sym-
metric power S" X of the surface X
defined by the equation () = 0. For
a partition A = (Aq, ..., \yp) of n, let
Sy C Sy, be the stabilizer of the vec-
tor . Let SAV := (V®m)5x

Proposition 0.10. One has
HPy(S"X) = @SAHPO



For example, if H Py(X) = R, then
HP)(S?X) = S?ROR, HP)(S3X) =
SSR®R® R R, cte. For the gen-
erating functions, we have

> dim HPy(S"X)[i]z"q" =
n>0
[TII =%
1 n>1
where d; = dim R|z].

Conjecture 0.11.1If X — X is
a (homogeneous) symplectic resolu-
tion of dimension n (i.e., a birational

map such that X is symplectic), then
dim HPy(X) = dim H"(X, C).

Only > is known. By the last ex-
ample, the Conjecture holds for sym-
metric powers of ADE singularities.



It also holds for Slodowy slices and
hypertoric varieties, but is open for
quiver varieties.

4. Idea of proof of the theo-
rem.
The proof of the theorem is based
on the theory of D-modules. Recall
that X C V = C". By a D-module
on X we mean a module over the
algebra Dy, of differential operators
on V' which is set-theoretically sup-
ported on X as an Oy -module. We
define the right D-module

M = Mx 4 = (IxDy+gDy)\Dy,

where Iy C Oy is the ideal of X,
and g is the Lie algebra of vector
fields on V' that are parallel to X
and restrict on X to elements of g.
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The proof is based on the following
facts:

e The space Ox /gO x is the top de
Rham cohomology of M, i.e.

Ox/80x = M ®p,, Oy.

e M is a holonomic D-module (its
singular support is the union of the
conormal bundles of the g-leaves. i.e.,
is Lagrangian, since there are finitely
many g-leaves).

e The cohomology of a holonomic
D-module is holonomic (a standard
theorem in D-module theory).
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