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1. Preliminaries.
• X - an affine algebraic variety

over C (possibly singular)
• OX - the algebra of regular func-

tions on X ; O∗X - the space of alge-
braic densities
• VectX = Der(OX) - the Lie al-

gebra of vector fields on X
• g ⊂ VectX - a Lie subalgebra.
• (O∗X)g - the space of g-invariant

densities.
Main Question. When is (O∗X)g

finite dimensional? What is its di-
mension?
Main example. X is a Poisson

variety, g = HVectX is the Lie alge-
bra of Hamiltonian vector fields.
Note that (O∗X)g = (OX/gOX)∗,

so the main question is equivalent to
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the same question about the space of
coinvariants OX/gOX . In the main
example, this is the space

HP0(X) := OX/{OX , OX},

called the zeroth Poisson homology
of X .
2. g-leaves and the main the-

orem.
In smooth or analytic geometry, a
g-leaf of a point x ∈ X is defined
as the set of points which one can
reach from xmoving along the vector
fields from g. We want to extend this
definition to the setting of algebraic
geometry.
To this end, define gx ⊂ TxX to

be the subspace spanned by special-
izations at x of vector fields from g,
and let Xi be the set of x ∈ X
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such that dim gx = i. Then Xi is
locally closed in X , and each irre-
ducible component Xi,j of Xi has
dimension ≥ i, since gx ⊂ TxXi,j
for all i, j, x ∈ Xi,j.

Proposition 0.1. Suppose that one
has dimXi,j = i for all i, j. Then
Xi,j are smooth and gx = TxXi,j
for all i, j, x ∈ Xi,j.

Definition 0.2. In this situation,
we say that Xi,j are the g-leaves of
X , and that X has finitely many
g-leaves. If X is Poisson and g =
HVectX then g-leaves are called sym-
plectic leaves.
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Theorem 0.3. (E-Schedler, 2009)
If X has finitely many g-leaves,
then OX/gOX is finite dimensional.
In particular, if X is Poisson and
has finitely many symplectic leaves
then HP0(X) is finite dimensional.

3. Examples. Here are some ex-
amples where this theorem applies.

Example 0.4.X is connected sym-
plectic of dimension n, g = HVectX .
In this case, X is the only symplectic
leaf, and HP0(X) = Hn(X,C) by
Brylinski’s theorem and Grothendieck’s
algebraic de Rham theorem.

Example 0.5. Let Y = X/G, where
X is as in the previous example, and
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G is a finite group of symplectomor-
phisms of X . Then the symplec-
tic leaves are the connected compo-
nents of the sets of points with a
given stabilizer, so there are finitely
many of them and the theorem says
that HP0(Y ) is finite dimensional.
In the case when X = C2n and G ⊂
Sp(2n,C), this was a conjecture of
Alev and Farkas, proved by Berest,
Ginzburg, and myself in 2004. The
dimension ofHP0(Y ) is unknown even
in this special case.

Example 0.6. Let Q(x, y, z) be a
polynomial, andX be the surface de-
fined by the equation

Q(x, y, z) = 0.
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Suppose thatQ is quasihomogeneous
and 0 ∈ X is an isolated singularity.
Then

HP0(X) = C[x, y, z]/(Qx, Qy, Qz),

the local ring of the singularity, which
is finite dimensional. Its dimension
is the Milnor number µ of the singu-
larity.
This example extends to surfaces in
CN , N > 3, which are complete in-
tersections, as well as to complete in-
tersections of dimensions d > 2 (in
which case g is replaced by the Lie al-
gebra of divergence-free vector fields
arising from d− 2-forms).

Example 0.7. As a generalization
of the previous example, consider the
case when Q is any polynomial (not
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necessarily quasihomogeneous), such
that X has isolated singularities.

Proposition 0.8. One has

HP0(X) = H2(X,C)⊕
⊕
s

Cµs,

where the sum is over singular points
of X, and µs is the Milnor number
of s.

Example 0.9. Let Q be quasiho-
mogeneous, and consider the sym-
metric power SnX of the surface X
defined by the equation Q = 0. For
a partition λ = (λ1, ..., λm) of n, let
Sλ ⊂ Sm be the stabilizer of the vec-
tor λ. Let SλV := (V ⊗m)Sλ.

Proposition 0.10. One has

HP0(SnX) =
⊕
λ

SλHP0(X).
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For example, if HP0(X) = R, then
HP0(S2X) = S2R⊕R,HP0(S3X) =
S3R⊕R⊗R⊕R, etc. For the gen-
erating functions, we have∑

n≥0

dimHP0(SnX)[i]ziqn =

∏
i

∏
n≥1

(1− ziqn)−di,

where di = dimR[i].

Conjecture 0.11. If X̃ → X is
a (homogeneous) symplectic resolu-
tion of dimension n (i.e., a birational

map such that X̃ is symplectic), then

dimHP0(X) = dimHn(X̃,C).

Only ≥ is known. By the last ex-
ample, the Conjecture holds for sym-
metric powers of ADE singularities.

9



It also holds for Slodowy slices and
hypertoric varieties, but is open for
quiver varieties.
4. Idea of proof of the theo-

rem.
The proof of the theorem is based

on the theory of D-modules. Recall
that X ⊂ V = Cn. By a D-module
on X we mean a module over the
algebra DV of differential operators
on V which is set-theoretically sup-
ported on X as an OV -module. We
define the right D-module

M = MX,g := (IXDV +g̃DV )\DV ,

where IX ⊂ OV is the ideal of X ,
and g̃ is the Lie algebra of vector
fields on V that are parallel to X
and restrict on X to elements of g.
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The proof is based on the following
facts:
• The space OX/gOX is the top de

Rham cohomology of M , i.e.

OX/gOX = M ⊗DV OV .
• M is a holonomic D-module (its

singular support is the union of the
conormal bundles of the g-leaves, i.e.,
is Lagrangian, since there are finitely
many g-leaves).
• The cohomology of a holonomic

D-module is holonomic (a standard
theorem in D-module theory).
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