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τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7)
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τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7)

τ1 = (1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12)
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τ -model. Example.
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τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7)

τ1 = (1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12)

τ2 = (1, 6)(2, 3)(4, 5)(7, 11)(8, 9)(10, 12)

Sergei Chmutov Partial duality of hypermaps



σ-model for oriented hypermaps
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σ-model. Example.
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σ-model. Example.
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σV = (1, 3, 5)(7, 8, 12) = τ2τ1|{1,3,5,7,8,12}
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σ-model. Example.
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σV = (1, 3, 5)(7, 8, 12) = τ2τ1|{1,3,5,7,8,12}

σE = (1, 7)(3, 12)(5, 8) = τ0τ2|{1,3,5,7,8,12}
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σ-model. Example.
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σV = (1, 3, 5)(7, 8, 12) = τ2τ1|{1,3,5,7,8,12}

σE = (1, 7)(3, 12)(5, 8) = τ0τ2|{1,3,5,7,8,12}

σF = (1, 12)(3, 8)(5, 7) = τ1τ0|{1,3,5,7,8,12}
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Duality for graphs

G

G∗ = G{1,2,3,4,5,6}
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G{1,2,3,4,5} = ???
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Partial duality for graphs (continuation)

R{1,2,3,4,5}
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Partial duality for hypermaps

Let S be a subset of the vertex-cells of G.
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Let S be a subset of the vertex-cells of G.
Choose a different type of cells, say hyperedges.
Step 1. ∂F is the boundary a surface F which is the union of
the cells from S and all hyperedge-cells.
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Partial duality for hypermaps

Let S be a subset of the vertex-cells of G.
Choose a different type of cells, say hyperedges.
Step 1. ∂F is the boundary a surface F which is the union of
the cells from S and all hyperedge-cells.
Step 2. Glue in a disk to each connected component of ∂F .
These will be the hyperedge-cells for GS.
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Partial duality for hypermaps (continuation)

Step 3. Gluing the vertex-cells.
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Partial duality for hypermaps (continuation)

Step 3. Gluing the vertex-cells.
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Partial duality for hypermaps (continuation)

Step 4. Forming the partial dual hypermap GS.

Sergei Chmutov Partial duality of hypermaps



Partial duality for hypermaps (continuation)

Step 4. Forming the partial dual hypermap GS.
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Partial duality. Properties.

(a) The resulting hypermap does not depend on the choice of
type at the beginning.
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(a) The resulting hypermap does not depend on the choice of
type at the beginning.
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(c) There is a bijection between the cells of type S in G and
the cells of the same type in GS. This bijection preserves
the valency of cells. The number of cell of other types may
change.
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Partial duality. Properties.

(a) The resulting hypermap does not depend on the choice of
type at the beginning.

(b)
(

GS
)S

= G.

(c) There is a bijection between the cells of type S in G and
the cells of the same type in GS. This bijection preserves
the valency of cells. The number of cell of other types may
change.

(d) Is s 6∈ S but has the same type as the cells of S, then
GS∪{s} =

(

GS
){s}.
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Partial duality. Properties.

(a) The resulting hypermap does not depend on the choice of
type at the beginning.

(b)
(

GS
)S

= G.

(c) There is a bijection between the cells of type S in G and
the cells of the same type in GS. This bijection preserves
the valency of cells. The number of cell of other types may
change.

(d) Is s 6∈ S but has the same type as the cells of S, then
GS∪{s} =

(

GS
){s}.

(e)
(

GS
)S′

= G∆(S,S′), where ∆(S,S′) := (S ∪ S′) \ (S ∩ S′) is
the symmetric difference of sets.
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Partial duality. Properties.

(a) The resulting hypermap does not depend on the choice of
type at the beginning.

(b)
(

GS
)S

= G.

(c) There is a bijection between the cells of type S in G and
the cells of the same type in GS. This bijection preserves
the valency of cells. The number of cell of other types may
change.

(d) Is s 6∈ S but has the same type as the cells of S, then
GS∪{s} =

(

GS
){s}.

(e)
(

GS
)S′

= G∆(S,S′), where ∆(S,S′) := (S ∪ S′) \ (S ∩ S′) is
the symmetric difference of sets.

(f) The partial duality preserves orientability of hypermaps.
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Partial duality in τ -model.

Theorem. Consider the τ -model for a hypermap G given by the
permutations τ0(G) : (v , e, f ) 7→ (v ′, e, f ),
τ1(G : (v , e, f ) 7→ (v , e′, f ), τ2(G) : (v , e, f ) 7→ (v , e, f ′) of its
local flags. Let V ′ be a subset of its vertices, τV ′

1 be the product
of all transpositions in τ1 for v ∈ V ′, and τV ′

2 be the product of
all transpositions in τ2 for v ∈ V ′. Then its partial dual GV ′

is
given by the permutations

τ0(G
V ′
) = τ0, τ1(G

V ′
) = τ1τ

V ′

1 τV ′

2 , τ2(G
V ′
) = τ1τ

V ′

1 τV ′

2 .

In other words the permutations τ1 and τ2 swap their
transpositions of local flags around the vertices in V ′. The
similar statement hold for partial duality relative to the subset of
hyperedges E ′ and for a subset of faces F ′.
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Partial duality in τ -model. Example.
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τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7)

τ1 = (1,2)(3,4)(5,6) (7, 9)(8, 10)(11, 12)

τ2 = (1,6)(2,3)(4,5) (7, 11)(8, 9)(10, 12)
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Partial duality in τ -model. Example.
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τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7)

τ1 = (1,2)(3,4)(5,6) (7, 9)(8, 10)(11, 12)

τ2 = (1,6)(2,3)(4,5) (7, 11)(8, 9)(10, 12)
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τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7)

τ1 = (1,6)(2,3)(4,5) (7, 9)(8, 10)(11, 12)

τ2 = (1,2)(3,4)(5,6) (7, 11)(8, 9)(10, 12)
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Partial duality in σ-model.

Theorem. Let S be a subsets S := V ′ of vertices (resp. subset
of hyperedges S := E ′ and subset of faces S := F ′) of a
hypermap G. Then its partial dual is given by the permutations

GV ′
= (σV ′σ

−1
V ′ , σEσV ′ , σV ′σF )

GE ′
= (σE ′σV , σE ′σ

−1
E ′ , σFσE ′)

GF ′
= (σVσF ′ , σF ′σE , σF ′σ

−1
F ′ ) ,

where σV ′ , σE ′ , σF ′ denote the permutations consisting of
cycles corresponding to the elements of V ′, E ′, F ′ respectively,
and overline means the complementary set of cycles.
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Partial duality in σ-model. Example.
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σV = (1, 3, 5)(7, 8, 12)

σE = (1, 7)(3, 12)(5, 8)

σF = (1, 12)(3, 8)(5, 7)
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Partial duality in σ-model. Example.
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σV = (1, 3, 5)(7, 8, 12)

σE = (1, 7)(3, 12)(5, 8)

σF = (1, 12)(3, 8)(5, 7)
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σV (G{v}) = σV ′σ
−1
V ′ = (1, 5, 3)(7, 8, 12)

σE(G{v}) = σEσV ′ = (1, 12, 3, 8, 5, 7)
σF (G{v}) = σV ′σF = (1, 12, 3, 8, 5, 7)
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