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Introduction
Pattern avoidance

Problem

Find an infinite word w over a finite alphabet > such that no factor
matches a given pattern.

o A kth power is a word of the form x* for some x € ¥*.
e murmur is a square.
@ An abelian kth power is a word of the form xy - - - xi, where each x; is
a permutation of xj.
e reappear is an abelian square.
o Let X C Z. An additive kth power is a word of the form xj - - - xx such

that
Pl =" =[x

lez---:Zxk.

o facade is an additive square if we leta=1,b=2, ...
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Introduction
Additive Powers

Pirillo and Varricchio (1994) discuss avoiding additive kth powers.
Independently, Halbeisen and Hungerbiihler (2000) considered additive
squares.

Theorem (Dekking, 1979)

Abelian 4th powers are avoidable over a binary alphabet.

Additive 4th powers are avoidable over a binary alphabet.
Are additive squares/cubes avoidable? How many symbols are required?
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Introduction
Our Result

Theorem
Suppose ¥ = {0,1,3,4} and p: ¥* — ¥* is the morphism

Then the fixed point
w = ¢¥(0) = 031430110343430 - - -

avoids additive cubes.

The morphism was found by brute force search (Shallit).
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Introduction
Proof Outline

@ Start with an infinite tree T representing all prefixes of w.
o Based on recursive structure of w.

Construct a tree T representing all triples of consecutive blocks.

Store information (state) at each node such that we can

e compute the state of a child from its parent and the edge label, and
o determine whether the node represents an additive cube given the state.

We use two vectors in N*.

Use linear algebra to show that, along a (hypothetical) path to an
additive cube, the vectors are bounded.

Exhaustively check the remaining (finite) search space for additive
cubes.
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Search Tree
Recursive Structure

\ \ N ~ So 0 T~ =~
! \ \ N NN AN So T~ T~ o
l . . N N N ~ -~ ~ . -
| N SO N S ~ o ~ < T~a
| \ \ N N N ~ o ~ . ~ - =~
\ \ N ~ ~ ~ ~ ~ - ~ -
I N ~ ~ ~ ~ . - -
\ \ N N N ~ ~_ -
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Search Tree
Quotients and Remainders

x div ¢

w=10[3|1|4|3|0|1|]1|0|3|4|3|4|3|0]|3
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Search Tree
Quotients and Remainders

x div ¢

w=10[3|1|4|3|0|1|]1|0|3|4|3|4|3|0]|3

Build a tree with a node for each prefix. For each x, draw an edge from
x div ¢ to x labelled x mod .
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Search Tree

ZoR0

€ 0 €
g/ éo e/ \4 %

Luke Schaeffer (Waterloo) Additive Cubes April 25th, 2013 8 /28



Search Tree

7'4

Three consecutive blocks are delimited by four positions: the start of each
block, and the end of the last block.

Definition

Suppose V is the set of nodes in 7. We define a tree 7* on nodes V4
such that there is an edge from (x1, x2, x3,x2) € V* to (y1, yo,y3,ya) € V*
labelled (a1, a2, a3, as) € {&,0,4}* if and only if there is an edge from x; to
y; labelled a; for i =1,2,3, 4.

Any triple of blocks by babs corresponds to a node in T4,

Annotate each node with information to identify additive cubes.
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Add some “state” to each node such that we can
@ compute the state of the child given the state of the parent and edge
label, and
@ additive cubes can be identified.

Example
Associate a word with each node in 7. Let € be the word for the root
node, and compute the word for a child as follows:

x L ©(x)y.

Then (by induction) node i is associated with w[0..i — 1].

@ We can recursively compute
w(0..ih — 1], w[0..i2 — 1], w[0..;3 — 1], w[0..is — 1] for a node
(i1, i, i3, ia) in T*.

e Given w[0..i7 — 1], w[0..i — 1], w[0..i3 — 1], w[0..is — 1], we can check
if w[ii..is — 1] is an additive cube.
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Linear Algebra
Parikh vectors

Definition

The Parikh map, ¥: £* — N>, maps a word x to a vector 1/(x) that
counts the number of occurrences of each symbol a € ¥ in x.

For example, 1/(034343) = (1,0, 3, 2).

Store 1(x) instead of x.
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Linear Algebra
Parikh Vector Operations

e We can compute 1(p(x)y) given 1(x) and y.

P(p(x)) = My(x)

where M is the incidence matrix of :

1 001
0 011
M= 1100
01 00

o Y(xy) = (x) +U(y)
P(x) L P(p(x)y) = M(x) + ()

@ We can detect additive cubes.
‘X| = ¢(X) : (1’ 17 17 1)
D x=1(x)-(0,1,3,4)
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Linear Algebra
Block Differences

Let b; = W[il..iz — l], b, = W[ig..i3 — 1], bz = W[i3..i4 — l] be three
consecutive blocks.
e Given t; = ¢(w[0..ih — 1]), to = P(w[0..ir — 1]), t3 = P(w]0..;3 — 1])
and tg = ¥(w[0..ig — 1]), we can tell if bybybs is an additive cube.

@ It suffices to have the Parikh vector for each block:

Y(b)=tr—t
Y(bo) =t3 — to
Y(b3) =ty — t3

or even just the block differences:

Y(b2) — (b)) =t3 —2ta + t1
Y(b3) —YP(b2) = ta — 2t3 + to

u:
v

to detect additive cubes.
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Linear Algebra

Proposal

Keep two block difference vectors,

u=vY(x) —P(x)
v =1(x3) — P(x2).

On transition (a1, a, a3, as), we compute v, v/ where

U = Mu— f(a1,a0,a3)

V/ = Mv — f(aQ, as, 34)

with f(a, b, c) = ¥(a) — 2¢(b) + ¥(c).
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Linear Algebra
Eigenbasis

Change basis so the matrix is in Jordan canonical form.

Entries are complex numbers, not integers. J

Eigencoordinates are decoupled for individual analysis. J

Suppose M = P~1DP, where D is a diagonal matrix with diagonal
elements A1, A2, A3, A4, the eigenvalues of M.

A1 = 1.69028 A2 = —1.50507
A3 = 0.40739 + 0.47657i A4 = 0.40739 — 0.47657/

Note that |As| = |A4| = 0.62696.
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Linear Algebra
Coordinates along a path

Recall the equation
u' = Mu — f(al, an, 33)

For each coordinate i = 1,2,3,4 in the eigenbasis, we have
u; = Njuj — fi(a1, a, a3).

Note that v} — A\ju; = fi(a1, a2, a3) is bounded.

Question
Suppose A € C and (Zj)f.io is a sequence of complex numbers with zg = 0
and

Z+1 -2z < B
for all j. What can we say about the asymptotic behaviour of such
sequences?
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Linear Algebra

Inside the Unit Circle (|\;| < 1)

Theorem

Let A € C be a complex number such that [A| < 1. Suppose (z);<, is a
complex sequence such that zy = 0 and

Z41 = Azl < B

for all j. Then |zj| < {&5 for all j.
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Linear Algebra

Inside the Unit Circle (|\;| < 1)

Theorem

Let A € C be a complex number such that |\| < 1. Suppose ()72, is a
complex sequence such that zy = 0 and

Z41 = Azl < B

for all j. Then |zj| < {&5 for all j.

Since A3 = 0.40739 + 0.47657/ and \4 = 0.40739 — 0.47657/ are inside
the unit circle,

For any node in the tree, the third and fourth eigencoordinates of u and v
are bounded.
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Linear Algebra
Inside the Unit Circle - Corollaries

@ For three consecutive blocks xi1xox3, the block difference vectors
u=v(b2) — ¢(b1)
v = ¢(b3) — ¥(b2)

are close to a plane (2-dimensional subspace).

@ If bybobs is an additive cube then we have two linear equations per
vector:

(1/1(b2) - ¢(b1)) ) (17 L1, 1) =0 (1/}([33) - ¢(b2)) : (1’ L1, 1) =0
(¢(b2) - 1/’(131)) ’ (07 L 374) =0 (¢(b3) - w(b2)) ’ (07 1, 374) =0

So u=1(b2) —1(b1) and v = ¢y(b3) — 1(b2) are bounded.
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Linear Algebra
Bounded endpoints

Let by bybs be an additive cube. Then 1 (by) — 1 (b1) and 1(b3) — ¥(b2)
are bounded.

In a path to an additive cube, the first and last nodes have bounded u and
v. What happens in the middle of the path?
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Linear Algebra

Outside the Unit Circle (|A;] > 1)

Theorem

Let A\ € C be a complex number such that |\| > 1. Suppose (Zj)fio is a
complex sequence such that zy = 0 and

Z+1 -2z < B

for all j. Then either |z;| < % for all j, or the sequence grows
exponentially.

Suppose x is a node along a path to a (hypothetical) additive cube in w.
Then the first and second eigencoordinates of u and v are bounded.
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@ Along a path to a hypothetical additive cube, all eigencoordinates of
u and v are bounded.

@ Hence, u=1(bp) —1(b1) and v = 1p(b3) — )(b2) are bounded,

integer vectors.

@ The search space is finite. A computer-assisted search for additive
cubes finishes the proof.
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Conclusion
Recap

e Construct an infinite search tree, T4, representing all triples of
consecutive blocks

@ Store a pair of vectors at each node.
@ |A3],|Aa| < 1 = two coordinates of u and v are bounded

everywhere.

@ At additive cube nodes, two additional equations make v and v
bounded.

@ |A1],|A2| > 1 = the other two coordinates v and v to be bounded
on the path.

@ Finite computer search.

Luke Schaeffer (Waterloo) Additive Cubes April 25th, 2013 22 /28



Conclusion
Open Problems

Can we avoid additive squares?

Is it possible to avoid additive cubes over a 3 symbol alphabet?
Are there “nicer” words avoiding additive cubes?

Which subsets of the integers allow us to avoid additive cubes?
Suppose we have a coding h(0) = a, h(1) = b, h(3) = c and

h(4) = d to w. For which tuples (a, b, c,d) € Z* does h(w) avoid
additive cubes?

©0 00O
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Extra Slides
Recoding w

Suppose h: " — Z* is a morphism where

Suppose xix; is a factor in w with |x1| = [x2|. Then >~ h(x1) = > h(x2) if
and only if

Q;Z)(Xl) ’ (av b, c, d) = ¢(X2) ’ (a’ b, c, d)
0= (¥(x2) —¢(x1)) - (a, b, ¢, d)

We do not want > h(x1) = >_ h(x2), so look for (a, b, c,d) not orthogonal
to Y(x2) — ().
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Extra Slides

Suppose we have (a, b, c,d) € Z* such that if x1x, is a factor in w with

|x1] = |x2|, then (¥(x2) — ¥ (x1)) - (a, b, c,d) = 0 if and only if
P(x1) = ¥(x2). Then h(w) avoids additive cubes.

Plot 1(x2) — 1(x1) for all xix2 in w such that |x;| = |x2|.

Note that |x1| = |x2| implies (¢(x2) — ¥(x1)) - (1,1,1,1) = 0, so there are
only three degrees of freedom for us to plot.
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Extra Slides

Points

Luke Schaeffer (Waterloo) Additive Cubes April 25th, 2013 26 / 28



Extra Slides
More Poi
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