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Introduction

Pattern avoidance

Problem

Find an infinite word w over a finite alphabet Σ such that no factor
matches a given pattern.

A kth power is a word of the form xk for some x ∈ Σ∗.
murmur is a square.

An abelian kth power is a word of the form x1 · · · xk , where each xi is
a permutation of x1.

reappear is an abelian square.

Let Σ ⊆ Z. An additive kth power is a word of the form x1 · · · xk such
that

|x1| = · · · = |xk |∑
x1 = · · · =

∑
xk .

facade is an additive square if we let a = 1, b = 2, . . .
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Introduction

Additive Powers

Pirillo and Varricchio (1994) discuss avoiding additive kth powers.
Independently, Halbeisen and Hungerbühler (2000) considered additive
squares.

Theorem (Dekking, 1979)

Abelian 4th powers are avoidable over a binary alphabet.

Corollary

Additive 4th powers are avoidable over a binary alphabet.

Questions

Are additive squares/cubes avoidable? How many symbols are required?
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Introduction

Our Result

Theorem

Suppose Σ = {0, 1, 3, 4} and ϕ : Σ∗ → Σ∗ is the morphism

ϕ(0) = 03

ϕ(1) = 43

ϕ(3) = 1

ϕ(4) = 01.

Then the fixed point

w := ϕω(0) = 031430110343430 · · ·

avoids additive cubes.

The morphism was found by brute force search (Shallit).
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Introduction

Proof Outline

Start with an infinite tree T representing all prefixes of w.

Based on recursive structure of w.

Construct a tree T 4 representing all triples of consecutive blocks.

Store information (state) at each node such that we can

compute the state of a child from its parent and the edge label, and
determine whether the node represents an additive cube given the state.

We use two vectors in N4.

Use linear algebra to show that, along a (hypothetical) path to an
additive cube, the vectors are bounded.

Exhaustively check the remaining (finite) search space for additive
cubes.
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Search Tree

Recursive Structure

w = 0 3 1 4 3 0 1 1 0 3 4 3 4 3 0 3 . . .

w = 0 3 1 4 3 0 1 1 0 3 4 3 4 3 0 3 . . .

Luke Schaeffer (Waterloo) Additive Cubes April 25th, 2013 6 / 28



Search Tree

Quotients and Remainders

w = 0 3 1 4 3 0 1 1 0 3 4 3 4 3 0 3 . . .

w = 0 3 1 4 3 0 1 1 0 3 4 3 4 3 0 3 . . .

x

x div ϕ

x mod ϕ

Idea

Build a tree with a node for each prefix. For each x , draw an edge from
x div ϕ to x labelled x mod ϕ.
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Search Tree

T

0 1

2

3 4

5 6 7

ε
0

ε

ε 4

ε 0 ε

ε 0 ε 4 ε 4
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Search Tree

T 4

Three consecutive blocks are delimited by four positions: the start of each
block, and the end of the last block.

Definition

Suppose V is the set of nodes in T . We define a tree T 4 on nodes V 4

such that there is an edge from (x1, x2, x3, x4) ∈ V 4 to (y1, y2, y3, y4) ∈ V 4

labelled (a1, a2, a3, a4) ∈ {ε, 0, 4}∗ if and only if there is an edge from xi to
yi labelled ai for i = 1, 2, 3, 4.

Any triple of blocks b1b2b3 corresponds to a node in T 4.

Next Step

Annotate each node with information to identify additive cubes.
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Search Tree

Add some “state” to each node such that we can

compute the state of the child given the state of the parent and edge
label, and

additive cubes can be identified.

Example

Associate a word with each node in T . Let ε be the word for the root
node, and compute the word for a child as follows:

x
y−→ ϕ(x)y .

Then (by induction) node i is associated with w [0..i − 1].

We can recursively compute
w [0..i1 − 1],w [0..i2 − 1],w [0..i3 − 1],w [0..i4 − 1] for a node
(i1, i2, i3, i4) in T 4.

Given w [0..i1 − 1],w [0..i2 − 1],w [0..i3 − 1],w [0..i4 − 1], we can check
if w [i1..i4 − 1] is an additive cube.
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Linear Algebra

Parikh vectors

Definition

The Parikh map, ψ : Σ∗ → NΣ, maps a word x to a vector ψ(x) that
counts the number of occurrences of each symbol a ∈ Σ in x .
For example, ψ(034343) = (1, 0, 3, 2).

Idea

Store ψ(x) instead of x .
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Linear Algebra

Parikh Vector Operations

We can compute ψ(ϕ(x)y) given ψ(x) and y .

ψ(ϕ(x)) = Mψ(x)

where M is the incidence matrix of ϕ:

M :=


1 0 0 1
0 0 1 1
1 1 0 0
0 1 0 0

 .

ψ(xy) = ψ(x) + ψ(y)

ψ(x)
y−→ ψ(ϕ(x)y) = Mψ(x) + ψ(y)

We can detect additive cubes.

|x | = ψ(x) · (1, 1, 1, 1)∑
x = ψ(x) · (0, 1, 3, 4)
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Linear Algebra

Block Differences

Let b1 = w [i1..i2 − 1], b2 = w [i2..i3 − 1], b3 = w [i3..i4 − 1] be three
consecutive blocks.

Given t1 = ψ(w [0..i1 − 1]), t2 = ψ(w [0..i2 − 1]), t3 = ψ(w [0..i3 − 1])
and t4 = ψ(w [0..i4 − 1]), we can tell if b1b2b3 is an additive cube.

It suffices to have the Parikh vector for each block:

ψ(b1) = t2 − t1

ψ(b2) = t3 − t2

ψ(b3) = t4 − t3

or even just the block differences:

u := ψ(b2)− ψ(b1) = t3 − 2t2 + t1

v := ψ(b3)− ψ(b2) = t4 − 2t3 + t2

to detect additive cubes.
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Linear Algebra

Proposal

Keep two block difference vectors,

u = ψ(x2)− ψ(x1)

v = ψ(x3)− ψ(x2).

On transition (a1, a2, a3, a4), we compute u′, v ′ where

u′ = Mu − f (a1, a2, a3)

v ′ = Mv − f (a2, a3, a4)

with f (a, b, c) = ψ(a)− 2ψ(b) + ψ(c).
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Linear Algebra

Eigenbasis

Idea

Change basis so the matrix is in Jordan canonical form.

Entries are complex numbers, not integers.

Eigencoordinates are decoupled for individual analysis.

Suppose M = P−1DP, where D is a diagonal matrix with diagonal
elements λ1, λ2, λ3, λ4, the eigenvalues of M.

λ1
.

= 1.69028 λ2 = −1.50507

λ3
.

= 0.40739 + 0.47657i λ4 = 0.40739− 0.47657i

Note that |λ3| = |λ4|
.

= 0.62696.
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Linear Algebra

Coordinates along a path

Recall the equation
u′ = Mu − f (a1, a2, a3)

For each coordinate i = 1, 2, 3, 4 in the eigenbasis, we have

u′i = λiui − fi (a1, a2, a3).

Note that u′i − λiui = fi (a1, a2, a3) is bounded.

Question

Suppose λ ∈ C and (zj)
∞
j=0 is a sequence of complex numbers with z0 = 0

and
|zj+1 − λzj | ≤ B

for all j . What can we say about the asymptotic behaviour of such
sequences?

Luke Schaeffer (Waterloo) Additive Cubes April 25th, 2013 16 / 28



Linear Algebra

Inside the Unit Circle (|λi | < 1)

Theorem

Let λ ∈ C be a complex number such that |λ| < 1. Suppose (zj)
∞
j=0 is a

complex sequence such that z0 = 0 and

|zj+1 − λzj | ≤ B

for all j . Then |zj | ≤ B
1−λ for all j .

Since λ3
.

= 0.40739 + 0.47657i and λ4 = 0.40739− 0.47657i are inside
the unit circle,

Corollary

For any node in the tree, the third and fourth eigencoordinates of u and v
are bounded.
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Linear Algebra

Inside the Unit Circle - Corollaries

For three consecutive blocks x1x2x3, the block difference vectors

u = ψ(b2)− ψ(b1)

v = ψ(b3)− ψ(b2)

are close to a plane (2-dimensional subspace).

If b1b2b3 is an additive cube then we have two linear equations per
vector:(
ψ(b2)− ψ(b1)

)
· (1, 1, 1, 1) = 0

(
ψ(b3)− ψ(b2)

)
· (1, 1, 1, 1) = 0(

ψ(b2)− ψ(b1)
)
· (0, 1, 3, 4) = 0

(
ψ(b3)− ψ(b2)

)
· (0, 1, 3, 4) = 0

So u = ψ(b2)− ψ(b1) and v = ψ(b3)− ψ(b2) are bounded.
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Linear Algebra

Bounded endpoints

Theorem

Let b1b2b3 be an additive cube. Then ψ(b2)− ψ(b1) and ψ(b3)− ψ(b2)
are bounded.

In a path to an additive cube, the first and last nodes have bounded u and
v . What happens in the middle of the path?
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Linear Algebra

Outside the Unit Circle (|λi | > 1)

Theorem

Let λ ∈ C be a complex number such that |λ| > 1. Suppose (zj)
∞
j=0 is a

complex sequence such that z0 = 0 and

|zj+1 − λzj | ≤ B

for all j . Then either |zj | ≤ B
λ−1 for all j , or the sequence grows

exponentially.

Corollary

Suppose x is a node along a path to a (hypothetical) additive cube in w.
Then the first and second eigencoordinates of u and v are bounded.
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Finite Search

Along a path to a hypothetical additive cube, all eigencoordinates of
u and v are bounded.

Hence, u = ψ(b2)− ψ(b1) and v = ψ(b3)− ψ(b2) are bounded,
integer vectors.

The search space is finite. A computer-assisted search for additive
cubes finishes the proof.
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Conclusion

Recap

Construct an infinite search tree, T 4, representing all triples of
consecutive blocks

Store a pair of vectors at each node.

|λ3| , |λ4| < 1 =⇒ two coordinates of u and v are bounded
everywhere.

At additive cube nodes, two additional equations make u and v
bounded.

|λ1| , |λ2| > 1 =⇒ the other two coordinates u and v to be bounded
on the path.

Finite computer search.
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Conclusion

Open Problems

1 Can we avoid additive squares?

2 Is it possible to avoid additive cubes over a 3 symbol alphabet?

3 Are there “nicer” words avoiding additive cubes?

4 Which subsets of the integers allow us to avoid additive cubes?

5 Suppose we have a coding h(0) = a, h(1) = b, h(3) = c and
h(4) = d to w. For which tuples (a, b, c , d) ∈ Z4 does h(w) avoid
additive cubes?
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Extra Slides

Recoding w

Suppose h : Σ∗ → Z∗ is a morphism where

h(0) = a

h(1) = b

h(3) = c

h(4) = d .

Suppose x1x2 is a factor in w with |x1| = |x2|. Then
∑

h(x1) =
∑

h(x2) if
and only if

ψ(x1) · (a, b, c , d) = ψ(x2) · (a, b, c , d)

0 = (ψ(x2)− ψ(x1)) · (a, b, c , d)

We do not want
∑

h(x1) =
∑

h(x2), so look for (a, b, c , d) not orthogonal
to ψ(x2)− ψ(x1).
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Extra Slides

Theorem

Suppose we have (a, b, c , d) ∈ Z4 such that if x1x2 is a factor in w with
|x1| = |x2|, then (ψ(x2)− ψ(x1)) · (a, b, c , d) = 0 if and only if
ψ(x1) = ψ(x2). Then h(w) avoids additive cubes.

Idea

Plot ψ(x2)− ψ(x1) for all x1x2 in w such that |x1| = |x2|.

Note that |x1| = |x2| implies (ψ(x2)− ψ(x1)) · (1, 1, 1, 1) = 0, so there are
only three degrees of freedom for us to plot.
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Extra Slides

Points
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Extra Slides

More Points
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Extra Slides

Points and Vector
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