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Deciding if a fixed point is periodic

» Recall: a primitive morphism generates either periodic

words or words avoiding t-powers for some ¢.

» Given a morphism (not necessarily primitive), can we tell
if its fixed points are periodic?
» Pansiot (1986) and also Harju and Linna (1986) gave a

decision procedure.

» Honkala (2008) gave a a nice, short proof.



Elementary morphisms

» Honkala’'s proof uses the notion of an elementary
morphism (Ehrenfeucht and Rozenberg 1978)

» A morphism A : X* — Y* is simplifiable if there is an
alphabet Z, smaller than X, and morphisms
f:X*—= Z"and g: Z* — Y™, such that h = gf.

» eg., h:0~0012,1— 12,2 — 012 is simplifiable via
f:0—aab,1—b,2+—aband g:a+ 0,0 — 12.

» a morphism is elementary if it is not simplifiable



Properties of elementary morphisms

» elementary morphisms are injective on finite and infinite
words (Ehrenfeucht and Rozenberg 1978)

» they are also non-erasing

» Honkala's method for deciding periodicity of fixed points

is based on two cancellation lemmas

» the first extends a result of Ehrenfeucht and Rozenberg



First cancellation result

Cancellation Lemma A (Honkala 2008)

Let h: X* = X* and let u and v be infinite words over X. If

there is a positive integer n such that A™(u) = h"(v), then
BIXI () = WX (v),



The elementary case is immediate

» by induction on | X|

» the result is true when | X| =1

» let | X| =k > 1 and suppose the result holds for all
smaller alphabets

» if h is elementary then A is injective and the result follows
immediately

» if h is not elementary then h = ¢gf, where f : X* — Y™,
g:Y*— X* and |Y]| < |X]|.



Applying the induction hypothesis

» we have (gf)"(u) = (gf)"(v)

>

>

>

apply f to both sides: (fg)"f(u) = (fg)"f(v)
note: fg is a morphism from Y* to Y*

apply the induction hypothesis to fg:

(fo)M () = (fg)™ f(v)

apply g to both sides: (gf)Y 1+ (u) = (¢f)V 1 f(v)
i.e., RYIH () = RV £(v)

apply h to both sides as many times as needed to get
X () = Xl (v)



Second cancellation result

Cancellation Lemma B (Honkala 2008)

Let h: X* — X™ and let u be an infinite word over X. If
there is a positive integer n such that u = A" (u), then
u = h¥Xl(u).



Another induction

» by induction on | X|
» the result is true when | X| =1

» let | X| =k > 1 and suppose the result holds for all

smaller alphabets
» let Z={a€ X :|h"(a)] =1 forall n}
» when h is elementary it induces a permutation of 7

» in particular AXI" fixes any element of Z



The elementary case

» suppose h is elementary

» if u contains only letters from Z then u = hl¥'(u) is

immediate
» so write u = wbv where w € Z* and b ¢ Z
» then A" (bv) = bv
» since b ¢ Z and h non-erasing, this implies (h™)“(b) = bv

» then there must be m < |X| for which (h™)*(b) = bv



The conclusion of the elementary case

» therefore A" (bv) = bv

» so in particular RXI'(bv) = bv

» recall: u = wbv

» since w € Z* we have w = h!¥'(w)

» then WX (u) = WX (wbv) = wbv = u



The non-elementary case

» suppose h is not elementary and write h = g f, where
f:X"—=Y* g: V"= X* and |Y]| < |X].

~ we have u = (gf)" (1)

» apply f to both sides: f(u) = (fg)"f(u)

» note: fg is a morphism from Y* to Y*

» apply the induction hypothesis to fg:
fla) = (f9)""f(u)

> apply g to both sides: (¢f)(u) = (/)" (u)

> ie., h(u) = AV (u)



The conclusion of the non-elementary case

» recall the hypothesis: u = h"(u)

» if n < |X| we can easily obtain u = hl¥l'(u)

» suppose n > | X|

» apply A" to both sides of h(u) = K'Y (u)

» we get A" (u) = RV ()

» apply Cancellation Lemma A to reduce the exponent:
h™(u) = h"hIY!(u)

» substitute u for h™(u) to get u = AlV'(u)

> now it is easy to get u = hlX'(u)



Some preliminaries

Let X be a k-letter alphabet. Let h: X* — X* be a

morphism. Let a € X be a letter where h(a) = au and
x = h¥(a) = auh(u)h?(u) - - -
is an infinite word. Write x = wjwly, where

wy = auh(u)h?(u)--- A" (u),
wg — hk(u)hk+1(u) . hk+k!_1(u),

y = hk+k!(u)hk+k!+1(u) e

and |ws| is minimal.



Honkala's criterion

Theorem (Honkala 2008)

The word x is ultimately periodic if and only if there are

integers » > 0, s > 1, and words w3, w, satisfying

h(w) = wwyws,  h(ws) = (waws)®,  wy = wawy.



Proof

suppose x is ultimately periodic

then there are ¢ < j such that

hi(u)hi+t (u) - - = W () R+ (u) - - -

then h'(uh(u)---) = h* (W~ (u)hW/ " (u) - - +)
apply Cancellation Lemma A:

hF(uh(u) -+ ) = BE(W ()= (u) - - -)

expand and rearrange:

PR (u) -+ = BT ()T () -
— h]ﬂ(hk(u)hkﬂ(u) .

)



Proof

v

we have A*(u)h*+1(u) - - = W= (R* (u)hFH (u) - - -)

v

Apply Cancellation Lemma B:

PR ) o = B (R () )

hk!+k(u)hk!+k+1<u) L.

v

but w3 = h*(u)h**1(u) - - - K**=1(u) and

y = hk+k:!(u)hk+k!+1<u> .

v

sowly =y

v

we have y = wy and thus x = wwy



Proof

now h(x) = x

so h(wy)h(wy)® = wyw§

this implies that h(wy) is a conjugate of a power of ws
i.e., h(wsg) = (wqws3)® for some s, where wy = w3wy
thus h(w)(waws)® = wy(wzwy)®

this implies that h(w;) = w; (w3w,) ws for some r

this completes the proof



A more general result

Theorem (Durand 2011; Mitrofanov 2011)

The following problem is decidable: Given morphisms
h: X*—= X*and 7: X* — Y™ and a letter ¢« € X, is the
word 7(h“(a)) ultimately periodic?



Characterizations of periodic words

» we have previously seen a characterization of periodic
words:

» A word x is ultimately periodic if and only if there is a
constant C such that for every n the number of factors of
x of length n is at most C.

» we will give another, based on repetitions ending at each

position



Fractional powers

» the exponent of a word is the ratio of its length to its
minimal period

» the exponent of toronto is 7/5

» we say it is a 7/5-power

» for any rational a we can define the notion of a-power

> let » = 1.618--- be the golden ratio (so ¢? = 2.618-- )



A characterization of periodic words

Theorem (Mignosi, Restivo, and Salemi 1998)

An infinite word x is ultimately periodic if and only if there is
a constant N such that every prefix of x of length at least NV

ends with a repetition of exponent at least ¢?.



An application to perfect sets of words

» in topology, a perfect set is a closed set for which every
point is a limit point

» In the context of infinite words, a set .S of infinite words
is perfect if every word x € S has the following property:
For every positive n, there is another word y € S such

that x and y agree on a prefix of length n.

» an equivalent reformulation: Let u be a finite word; if u
has an infinite extension to a word in .S, then it has two

infinite extensions to words in S.



Perfect sets of repetition-free words

v

several authors have studied classes of repetition-free

words with respect to the property of being perfect

v

notably: Shelton, Soni, and Currie

v

they used the so-called fixing-block method

v

a powerful, but technically difficult, method



Overlaps

» an overlap is a repetition with exponent larger than 2

» the Thue—Morse word
t =0110100110010110- - -

is overlap-free (Thue 1912)

» Fife (1980) completely characterized the infinite

overlap-free binary words

» an immediate consequence is that the set of infinite

overlap-free binary words is perfect



Some

notation

we will show that for v > ¢? + 1, the set of infinite
a-power-free words over any alphabet of size at least two

is perfect
let & > 3 be a real number
let ay - - - ap be a word of length k over an alphabet A

let t;, denote the word obtained by deleting the first h — 1

symbols of the Thue—Morse word



The first extension lemma

Lemma A

If aq---aty, is an a-power-free extension of a; - - - ag, then

there is another a-power-free extension of a; - - - a.



Proof of the first extension lemma

v

hypothesis: ay - - - aity is a-power-free

v

let v be a prefix of t; of length longer than ka

v

since the set of infinite overlap-free words is perfect, there

is another overlap-free word vs

» claim: ay - - - apvs is a-power-free



Proof of the first extension lemma

> suppose aj - - - avs contains an a-power z with period P

» then z starts somewhere within a; - - - a5 and extends into

vs
» P < k, since otherwise vs contains an (o — 1)-power

» also z extends into s, since otherwise 2 is contained in

ay - - - apv which is a-power-free
» so |z| < Pa < ka and |z| > |v] > ka

» we have a contradiction



The second extension lemma

Lemma B

If ay---a; is a-power-free and does not end in an
(cv — 1)-power, then there exists i such that a; - - - axt; is

a-power-free.



Proof of the second extension lemma

» if ay---agty is a-power-free we are done
» suppose it contains an a-power z with period P
» 2z begins within a; - - - a, and extends into t;

» z begins at least P < k positions before t;, since

otherwise t; contains an (a — 1)-power

» 2 extends at least P positions into t;, since otherwise
aj - - - ag ends with an (o — 1)-power

» so the suffix of ay - - - a of length P equals the prefix of
t, of length P

> 1.e., Qp_pi1ap—py2 - Qrtpi =t



Proof of the second extension lemma

» now consider the word ay - - - axtpi; = ay - - ax_pty
» if it is a-power-free we are done
» suppose it contains an a-power z, with period Ps

» as before, z; begins at least P, < k positions before tp,

and extends at least P, positions into tp;

» furthermore, P, > P, since otherwise z, is contained in

t1, which is overlap-free

» so the suffix of a; - - - a; of length P, equals the prefix of

tp, of length P,

> 1€, p_py1Uk—Pyy2 - Axbpypy1 = tpyg



Proof of the second extension lemma

» we continue in this way and obtain a sequence of integers
P<PBP<P<---

» but each P, is less than or equal to &

» so the sequence ends after some finite number, say ¢, of
terms

» thenfori =P+ Po+ Py + -+ P, the word a; - - - axt;

is a-power-free



The set of a-power-free words is perfect

Theorem (Mignosi, Restivo, and Salemi 1998)

Let  be a real number greater than or equal to ¢* + 1. The
set of a-power-free words over an alphabet of size at least 2 is

perfect.



Proof of Theorem

» let x = ajas - -- be an a-power-free word

» there are infinitely many £ such that a; - - - a; does not
end with an (a — 1)-power, since otherwise x would be

ultimately periodic

» for each such k, by Lemma B there is an ¢ such that
y = a - - - agt; is a-power-free

» if x #y we are done

» if x =y then Lemma A implies that a; - - - a; has two

a-power-free extensions

» this concludes the proof



The tree of a-power-free words

» the last result says something about infinite branches in

the tree of a-power-free words
» one can also ask about finite branches in this tree
» a leaf corresponds to a maximal a-power-free word
» let t and £ be positive integers

» any t-power-free word over a k-letter alphabet can be
extended to a maximal ¢-power-free word (Bean,
Ehrenfeucht, McNulty 1979)



Maximal squarefree words

Theorem (Petrova and Shur 2012)

For every n there is a ternary squarefree word w whose longest

squarefree extension wu satisfies |v| = n.



Conclusion

» we have seen the following results:

» primitive morphisms generate either periodic words or

words avoiding t-powers for some ¢

» there is an algorithm to decide if an infinite word

generated by a morphism is periodic

» for a > ¢? + 1, the set of a-power-free words is perfect



The End



