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Deciding if a fixed point is periodic

I Recall: a primitive morphism generates either periodic

words or words avoiding t-powers for some t.

I Given a morphism (not necessarily primitive), can we tell

if its fixed points are periodic?

I Pansiot (1986) and also Harju and Linna (1986) gave a

decision procedure.

I Honkala (2008) gave a a nice, short proof.



Elementary morphisms

I Honkala’s proof uses the notion of an elementary

morphism (Ehrenfeucht and Rozenberg 1978)

I A morphism h : X∗ → Y ∗ is simplifiable if there is an

alphabet Z, smaller than X, and morphisms

f : X∗ → Z∗ and g : Z∗ → Y ∗, such that h = gf .

I e.g., h : 0 7→ 0012, 1 7→ 12, 2 7→ 012 is simplifiable via

f : 0 7→ aab, 1 7→ b, 2 7→ ab and g : a 7→ 0, b 7→ 12.

I a morphism is elementary if it is not simplifiable



Properties of elementary morphisms

I elementary morphisms are injective on finite and infinite

words (Ehrenfeucht and Rozenberg 1978)

I they are also non-erasing

I Honkala’s method for deciding periodicity of fixed points

is based on two cancellation lemmas

I the first extends a result of Ehrenfeucht and Rozenberg



First cancellation result

Cancellation Lemma A (Honkala 2008)

Let h : X∗ → X∗ and let u and v be infinite words over X. If

there is a positive integer n such that hn(u) = hn(v), then

h|X|(u) = h|X|(v).



The elementary case is immediate

I by induction on |X|

I the result is true when |X| = 1

I let |X| = k > 1 and suppose the result holds for all

smaller alphabets

I if h is elementary then h is injective and the result follows

immediately

I if h is not elementary then h = gf , where f : X∗ → Y ∗,

g : Y ∗ → X∗, and |Y | < |X|.



Applying the induction hypothesis

I we have (gf)n(u) = (gf)n(v)

I apply f to both sides: (fg)nf(u) = (fg)nf(v)

I note: fg is a morphism from Y ∗ to Y ∗

I apply the induction hypothesis to fg:

(fg)|Y |f(u) = (fg)|Y |f(v)

I apply g to both sides: (gf)|Y |+1(u) = (gf)|Y |+1f(v)

I i.e., h|Y |+1(u) = h|Y |+1f(v)

I apply h to both sides as many times as needed to get

h|X|(u) = h|X|(v)



Second cancellation result

Cancellation Lemma B (Honkala 2008)

Let h : X∗ → X∗ and let u be an infinite word over X. If

there is a positive integer n such that u = hn(u), then

u = h|X|!(u).



Another induction

I by induction on |X|

I the result is true when |X| = 1

I let |X| = k > 1 and suppose the result holds for all

smaller alphabets

I let Z = {a ∈ X : |hn(a)| = 1 for all n}

I when h is elementary it induces a permutation of Z

I in particular h|X|! fixes any element of Z



The elementary case

I suppose h is elementary

I if u contains only letters from Z then u = h|X|!(u) is

immediate

I so write u = wbv where w ∈ Z∗ and b /∈ Z

I then hn(bv) = bv

I since b /∈ Z and h non-erasing, this implies (hn)ω(b) = bv

I then there must be m ≤ |X| for which (hm)ω(b) = bv



The conclusion of the elementary case

I therefore hm(bv) = bv

I so in particular h|X|!(bv) = bv

I recall: u = wbv

I since w ∈ Z∗ we have w = h|X|!(w)

I then h|X|!(u) = h|X|!(wbv) = wbv = u



The non-elementary case

I suppose h is not elementary and write h = gf , where

f : X∗ → Y ∗, g : Y ∗ → X∗, and |Y | < |X|.

I we have u = (gf)n(u)

I apply f to both sides: f(u) = (fg)nf(u)

I note: fg is a morphism from Y ∗ to Y ∗

I apply the induction hypothesis to fg:

f(u) = (fg)|Y |!f(u)

I apply g to both sides: (gf)(u) = (gf)|Y |!+1(u)

I i.e., h(u) = h|Y |!+1(u)



The conclusion of the non-elementary case

I recall the hypothesis: u = hn(u)

I if n < |X| we can easily obtain u = h|X|!(u)

I suppose n ≥ |X|

I apply hn to both sides of h(u) = h|Y |!+1(u)

I we get hn+1(u) = hn+1h|Y |!(u)

I apply Cancellation Lemma A to reduce the exponent:

hn(u) = hnh|Y |!(u)

I substitute u for hn(u) to get u = h|Y |!(u)

I now it is easy to get u = h|X|!(u)



Some preliminaries

Let X be a k-letter alphabet. Let h : X∗ → X∗ be a

morphism. Let a ∈ X be a letter where h(a) = au and

x = hω(a) = auh(u)h2(u) · · ·

is an infinite word. Write x = w1w
q
2y, where

w1 = auh(u)h2(u) · · ·hk−1(u),

wq
2 = hk(u)hk+1(u) · · ·hk+k!−1(u),

y = hk+k!(u)hk+k!+1(u) · · · ,

and |w2| is minimal.



Honkala’s criterion

Theorem (Honkala 2008)

The word x is ultimately periodic if and only if there are

integers r ≥ 0, s ≥ 1, and words w3, w4 satisfying

h(w1) = w1w
r
2w3, h(w2) = (w4w3)

s, w2 = w3w4.



Proof

I suppose x is ultimately periodic

I then there are i < j such that

hi(u)hi+1(u) · · · = hj(u)hj+1(u) · · ·

I then hi(uh(u) · · · ) = hi(hj−i(u)hj−i+1(u) · · · )

I apply Cancellation Lemma A:

hk(uh(u) · · · ) = hk(hj−i(u)hj−i+1(u) · · · )

I expand and rearrange:

hk(u)hk+1(u) · · · = hk+j−i(u)hk+j−i+1(u) · · ·

= hj−i(hk(u)hk+1(u) · · · )



Proof

I we have hk(u)hk+1(u) · · · = hj−i(hk(u)hk+1(u) · · · )

I Apply Cancellation Lemma B:

hk(u)hk+1(u) · · · = hk!(hk(u)hk+1(u) · · · )

= hk!+k(u)hk!+k+1(u) · · ·

I but wq
2 = hk(u)hk+1(u) · · ·hk+k!−1(u) and

y = hk+k!(u)hk+k!+1(u) · · ·

I so wq
2y = y

I we have y = wω
2 and thus x = w1w

ω
2



Proof

I now h(x) = x

I so h(w1)h(w2)
ω = w1w

ω
2

I this implies that h(w2) is a conjugate of a power of w2

I i.e., h(w2) = (w4w3)
s for some s, where w2 = w3w4

I thus h(w1)(w4w3)
ω = w1(w3w4)

ω

I this implies that h(w1) = w1(w3w4)
rw3 for some r

I this completes the proof



A more general result

Theorem (Durand 2011; Mitrofanov 2011)

The following problem is decidable: Given morphisms

h : X∗ → X∗ and τ : X∗ → Y ∗ and a letter a ∈ X, is the

word τ(hω(a)) ultimately periodic?



Characterizations of periodic words

I we have previously seen a characterization of periodic

words:

I A word x is ultimately periodic if and only if there is a

constant C such that for every n the number of factors of

x of length n is at most C.

I we will give another, based on repetitions ending at each

position



Fractional powers

I the exponent of a word is the ratio of its length to its

minimal period

I the exponent of toronto is 7/5

I we say it is a 7/5-power

I for any rational α we can define the notion of α-power

I let φ = 1.618 · · · be the golden ratio (so φ2 = 2.618 · · · )



A characterization of periodic words

Theorem (Mignosi, Restivo, and Salemi 1998)

An infinite word x is ultimately periodic if and only if there is

a constant N such that every prefix of x of length at least N

ends with a repetition of exponent at least φ2.



An application to perfect sets of words

I in topology, a perfect set is a closed set for which every

point is a limit point

I In the context of infinite words, a set S of infinite words

is perfect if every word x ∈ S has the following property:

For every positive n, there is another word y ∈ S such

that x and y agree on a prefix of length n.

I an equivalent reformulation: Let u be a finite word; if u

has an infinite extension to a word in S, then it has two

infinite extensions to words in S.



Perfect sets of repetition-free words

I several authors have studied classes of repetition-free

words with respect to the property of being perfect

I notably: Shelton, Soni, and Currie

I they used the so-called fixing-block method

I a powerful, but technically difficult, method



Overlaps

I an overlap is a repetition with exponent larger than 2

I the Thue–Morse word

t = 0110100110010110 · · ·

is overlap-free (Thue 1912)

I Fife (1980) completely characterized the infinite

overlap-free binary words

I an immediate consequence is that the set of infinite

overlap-free binary words is perfect



Some notation

I we will show that for α ≥ φ2 + 1, the set of infinite

α-power-free words over any alphabet of size at least two

is perfect

I let α > 3 be a real number

I let a1 · · · ak be a word of length k over an alphabet A

I let th denote the word obtained by deleting the first h− 1

symbols of the Thue–Morse word



The first extension lemma

Lemma A

If a1 · · · akth is an α-power-free extension of a1 · · · ak, then

there is another α-power-free extension of a1 · · · ak.



Proof of the first extension lemma

I hypothesis: a1 · · · akth is α-power-free

I let v be a prefix of th of length longer than kα

I since the set of infinite overlap-free words is perfect, there

is another overlap-free word vs

I claim: a1 · · · akvs is α-power-free



Proof of the first extension lemma

I suppose a1 · · · akvs contains an α-power z with period P

I then z starts somewhere within a1 · · · ak and extends into

vs

I P < k, since otherwise vs contains an (α− 1)-power

I also z extends into s, since otherwise z is contained in

a1 · · · akv which is α-power-free

I so |z| ≤ Pα < kα and |z| > |v| > kα

I we have a contradiction



The second extension lemma

Lemma B

If a1 · · · ak is α-power-free and does not end in an

(α− 1)-power, then there exists i such that a1 · · · akti is

α-power-free.



Proof of the second extension lemma

I if a1 · · · akt1 is α-power-free we are done

I suppose it contains an α-power z with period P

I z begins within a1 · · · ak and extends into t1

I z begins at least P ≤ k positions before t1, since

otherwise t1 contains an (α− 1)-power

I z extends at least P positions into t1, since otherwise

a1 · · · ak ends with an (α− 1)-power

I so the suffix of a1 · · · ak of length P equals the prefix of

t1 of length P

I i.e., ak−P+1ak−P+2 · · · aktP+1 = t1



Proof of the second extension lemma

I now consider the word a1 · · · aktP+1 = a1 · · · ak−P t1
I if it is α-power-free we are done

I suppose it contains an α-power z2 with period P2

I as before, z2 begins at least P2 ≤ k positions before tP+1

and extends at least P2 positions into tP+1

I furthermore, P2 > P , since otherwise z2 is contained in

t1, which is overlap-free

I so the suffix of a1 · · · ak of length P2 equals the prefix of

tP+1 of length P2

I i.e., ak−P2+1ak−P2+2 · · · aktP+P2+1 = tP+1



Proof of the second extension lemma

I we continue in this way and obtain a sequence of integers

P < P2 < P3 < · · ·

I but each Pi is less than or equal to k

I so the sequence ends after some finite number, say q, of

terms

I then for i = P + P2 + P3 + · · ·+ Pq the word a1 · · · akti
is α-power-free



The set of α-power-free words is perfect

Theorem (Mignosi, Restivo, and Salemi 1998)

Let α be a real number greater than or equal to φ2 + 1. The

set of α-power-free words over an alphabet of size at least 2 is

perfect.



Proof of Theorem

I let x = a1a2 · · · be an α-power-free word

I there are infinitely many k such that a1 · · · ak does not

end with an (α− 1)-power, since otherwise x would be

ultimately periodic

I for each such k, by Lemma B there is an i such that

y = a1 · · · akti is α-power-free

I if x 6= y we are done

I if x = y then Lemma A implies that a1 · · · ak has two

α-power-free extensions

I this concludes the proof



The tree of α-power-free words

I the last result says something about infinite branches in

the tree of α-power-free words

I one can also ask about finite branches in this tree

I a leaf corresponds to a maximal α-power-free word

I let t and k be positive integers

I any t-power-free word over a k-letter alphabet can be

extended to a maximal t-power-free word (Bean,

Ehrenfeucht, McNulty 1979)



Maximal squarefree words

Theorem (Petrova and Shur 2012)

For every n there is a ternary squarefree word w whose longest

squarefree extension wv satisfies |v| = n.



Conclusion

I we have seen the following results:

I primitive morphisms generate either periodic words or

words avoiding t-powers for some t

I there is an algorithm to decide if an infinite word

generated by a morphism is periodic

I for α ≥ φ2 + 1, the set of α-power-free words is perfect



The End


