String Matching with Involutions

Florin Manea

Challenges in Combinatorics on Words — April 2013
Fields Institute, Toronto

Open Problem String Matching with Involutions 1

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T.

Open Problem String Matching with Involutions 2

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T.
P = acgttgcacg

T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg
acacacacaacgttgcacgaaaaaaagcaaggtcgaataatacgttgcacgtttttt

Open Problem String Matching with Involutions 2

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T.
P = acgttgcacg

T = atatatataacgtigcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg
acacacacaacgttgcacgaaaaaaagcaaggtcgaataatacgttgcacgtttttt

Open Problem String Matching with Involutions 2

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T.
P = acgttgcacg

T = atatatataacgiigcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg
acacacacaacgttgcacgaaaaaaagcaaggtcgaataatacgttgcacgtttttt

Open Problem String Matching with Involutions 2

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T.

P
T

acgttgcacg
atatatataacgtigcacgtigcacgaaaaaaacgtigcacgaataatacgtigcacg
acacacacaacgtigcacgaaaaaaagcaaggtcgaataatacgitgcacg tttttt

Solution: O(|T| + |P|), e.g., the Knuth-Morris-Pratt algorithm.

Open Problem String Matching with Involutions 2

String matching with involutions

Antimorphic involution f : V* — V*: f-mirroring.
[f(w) = f(wln])f(wln—1])--- f(w[1]), £ = Id].

Open Problem String Matching with Involutions 8

String matching with involutions

Antimorphic involution f : V* — V*: f-mirroring.
[f(w) = f(wln])f(wln—1])--- f(w[1]), £ = Id].

Given T and P and an antimorphic involution f : V* — V*, find all
factors P’ of T obtained by non-overlapping f-mirrorings from P.

Open Problem String Matching with Involutions

String matching with involutions

Antimorphic involution f : V* — V*: f-mirroring.
[f(w) = f(wln])f(wln—1])--- f(w[1]), £ = Id].

Given T and P and an antimorphic involution f : V* — V*, find all
factors P’ of T obtained by non-overlapping f-mirrorings from P.

P = acgttgcacg
f oo fla)=af(c)=cf(g)=g,f(t)=t
T =

atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg
acacacacaacgttgcacgaaaaaagcatacgtcgaataatacgacgttcgtttttt

Open Problem String Matching with Involutions

String matching with involutions

Antimorphic involution f : V* — V*: f-mirroring.
[f(w) = f(wln])f(wln—1])--- f(w[1]), £ = Id].

Given T and P and an antimorphic involution f : V* — V*, find all
factors P’ of T obtained by non-overlapping f-mirrorings from P.

P = acgttgcacg

f : f(a)=af(c)=c,f(g)=g,f(t)=t

T = atatatataacgiigcacgttgcacgaaaaaaacgttgcacgaataatacgtigcacg
acacacacaacgttgcacgaaaaaagcat cgaataatacg cgtttttt

Open Problem String Matching with Involutions 8

String matching with involutions

Antimorphic involution f : V* — V*: f-mirroring.
[f(w) = f(wln])f(wln—1])--- f(w[1]), £ = Id].

Given T and P and an antimorphic involution f : V* — V*, find all
factors P’ of T obtained by non-overlapping f-mirrorings from P.

P = acgttgcacg
foo fla=af(c)=cflg) =g f(t)=t
T = atatatataacgiigcacgttgcacgaaaaaaacgttgcacgaataatacgtigcacg

acacacacaacgttgcacgaaaaaagcatacgtcgaataatacgacgttcg tttttt

P = acgttgcacg
f f(a)=t,f(c) =g.f(g) =c f(t)=a
T = atatatataacgttgcacgtcgcacgaaaaaaacgtigcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaacgttagcaacgaataatacgtgcaacgtttttt

Open Problem String Matching with Involutions 8

String matching with involutions

Antimorphic involution f : V* — V*: f-mirroring.
[f(w) = f(wln])f(wln—1])--- f(w[1]), £ = Id].

Given T and P and an antimorphic involution f : V* — V*, find all
factors P’ of T obtained by non-overlapping f-mirrorings from P.

P = acgttgcacg
foo fla=af(c)=cflg) =g f(t)=t
T = atatatataacgiigcacgttgcacgaaaaaaacgttgcacgaataatacgtigcacg

acacacacaacgttgcacgaaaaaagcatacgtcgaataatacgacgttcg tttttt

P = acgttgcacg

f f(a)=t,f(c)=g,f(g)=c,f(t)=a

T = atatatataacgiigcacgtcgcacgaaaaaaacgttgcacgaataatacgttgecacy
acacacacaacgtigcacgaaaaaacgtt acgaataatacg cgtttttt

Open Problem String Matching with Involutions 8

Why string matching with involutions?

@ Approximate string matching: find all the factors of T obtained from
P by a series of simple operations (e.g., edit operations).

Open Problem String Matching with Involutions 4

Why string matching with involutions?

@ Approximate string matching: find all the factors of T obtained from
P by a series of simple operations (e.g., edit operations).

@ Bio-inspired operations: affect the pattern on a larger scale, e.g.,
mirroring of factors, translocations, etc.

[Cantone, Cristofaro, Faro, Giaquinta, Grabowski, 2009 - 2011]: string
matching with rotations and translocations,

Open Problem String Matching with Involutions 4

Why string matching with involutions?

@ Approximate string matching: find all the factors of T obtained from
P by a series of simple operations (e.g., edit operations).

@ Bio-inspired operations: affect the pattern on a larger scale, e.g.,
mirroring of factors, translocations, etc.
[Cantone, Cristofaro, Faro, Giaquinta, Grabowski, 2009 - 2011]: string
matching with rotations and translocations,
[Czeizler, Czeizler, Kari, Seki, 2008 - 2011]: combinatorics on words
for repetitions with involutions: xf(x)xxf(x)...,

Open Problem String Matching with Involutions 4

Why string matching with involutions?

@ Approximate string matching: find all the factors of T obtained from
P by a series of simple operations (e.g., edit operations).

@ Bio-inspired operations: affect the pattern on a larger scale, e.g.,
mirroring of factors, translocations, etc.
[Cantone, Cristofaro, Faro, Giaquinta, Grabowski, 2009 - 2011]: string
matching with rotations and translocations,
[Czeizler, Czeizler, Kari, Seki, 2008 - 2011]: combinatorics on words
for repetitions with involutions: xf(x)xxf(x)...,
[Gawrychowski, Manea, Miiller, Mercas, Nowotka, 2012 - 2013]:
algorithmics and combinatorics on words for general
pseudo-repetitions.

Open Problem String Matching with Involutions 4

Known results

[T|=n,|Pl=m
e Mirroring: O(nm) time in the worst case, O(m?) space complexity
[Cantone et al., CPM 2011].

Open Problem String Matching with Involutions 5

Known results

[T|=n,|Pl=m
e Mirroring: O(nm) time in the worst case, O(m?) space complexity
[Cantone et al., CPM 2011].

e Translocations are allowed: O(nm?) time in the worst case, O(m)
space, O(n) average time (subject to some artificial restriction).
[Grabowski et al., Inf. Proc. Lett. 2011]

Open Problem String Matching with Involutions 5

Known results

[T|=n,|P[=m

e Mirroring: O(nm) time in the worst case, O(m?) space complexity
[Cantone et al., CPM 2011].

e Translocations are allowed: O(nm?) time in the worst case, O(m)
space, O(n) average time (subject to some artificial restriction).
[Grabowski et al., Inf. Proc. Lett. 2011]

@ Open problem: linear average time, with O(nm) or better time in

worst case, O(m?) or better space complexity.
[Cantone et al., CPM 2011].

Open Problem String Matching with Involutions

(our) Latest Results:

@ Antimorphic involutions: generalized mirroring.

Open Problem String Matching with Involutions 6

(our) Latest Results:

@ Antimorphic involutions: generalized mirroring.

@ Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

Open Problem String Matching with Involutions 6

(our) Latest Results:

@ Antimorphic involutions: generalized mirroring.

@ Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

e O(nm) worst case time complexity, O(m) space complexity.

Open Problem String Matching with Involutions

(our) Latest Results:

@ Antimorphic involutions: generalized mirroring.

@ Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

e O(nm) worst case time complexity, O(m) space complexity.

e O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

Open Problem String Matching with Involutions 6

(our) Latest Results:

@ Antimorphic involutions: generalized mirroring.

@ Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

e O(nm) worst case time complexity, O(m) space complexity.

e O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

@ Online algorithm.

Open Problem String Matching with Involutions 6

(our) Latest Results:

@ Antimorphic involutions: generalized mirroring.

@ Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

e O(nm) worst case time complexity, O(m) space complexity.

e O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

@ Online algorithm.

@ Open problems: better complexities (for what kind of alphabets?)

Open Problem String Matching with Involutions

(our) Latest Results:

@ Antimorphic involutions: generalized mirroring.

@ Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

e O(nm) worst case time complexity, O(m) space complexity.

e O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

@ Online algorithm.

@ Open problems: better complexities (for what kind of alphabets?),
use also translocations

Open Problem String Matching with Involutions

(our) Latest Results:

@ Antimorphic involutions: generalized mirroring.

@ Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

e O(nm) worst case time complexity, O(m) space complexity.

e O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

@ Online algorithm.

@ Open problems: better complexities (for what kind of alphabets?),
use also translocations, simpler solutions.

Open Problem String Matching with Involutions 6

