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Formal power series

Formal power series

Let K be any field. The ring of formal power series over K , denoted KJtK,
consists of formal infinite sums

∑∞
n=0 fntn added term-by-term:

∞∑
n=0

fntn +
∞∑
n=0

gntn =
∞∑
n=0

(fn + gn)tn

and multiplied by formal series multiplication (convolution):

∞∑
n=0

fntn ×
∞∑
n=0

gntn =
∞∑
n=0

(
n∑

i=0

fign−i

)
tn.
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Formal power series

Formal Laurent series

A formal Laurent series over K is a formal doubly infinite sum
∑

n∈Z fntn

with fn ∈ K such that only finitely many of the fn for n < 0 are nonzero.
These again form a ring:∑

n∈Z
fntn +

∑
n∈Z

gntn =
∑
n∈Z

(fn + gn)tn

∑
n∈Z

fntn ×
∑
n∈Z

gntn =
∑
n∈Z

 ∑
i+j=n

figj

 tn.

In fact these form a field, denoted K ((t)). It is the fraction field of KJtK.
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Formal power series

Polynomials and power series

There is an obvious inclusion of the polynomial ring K [t] into the formal
power series ring KJtK. Since K ((t)) is a field, this extends to an inclusion
of the rational function field K (t) into the formal Laurent series field
K ((t)).

Proposition (easy)

The image of K (t) in K ((t)) consists of those formal Laurent series∑
n∈Z fntn for which the sequence f0, f1, . . . satisfies a linear recurrence

relation. That is, for some nonnegative integer m there exist
c0, . . . , cm ∈ K not all zero such that

c0fn + · · ·+ cmfn+m = 0 (n = 0, 1, . . . ).
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Formal power series

Algebraic dependence

Let K ⊆ L be an inclusion of fields. An element x ∈ L is algebraic over K
(or integral over K ) if there exists a monic polynomial P[z ] ∈ K [z ] such
that P(x) = 0. For example,

√
−1 ∈ C is algebraic over Q.

Proposition

The set of x ∈ L which are algebraic over K is a subfield of L.

Proof.

x ∈ L is algebraic over K if and only if all powers of x lie in a
finite-dimensional K -subspace of L. (We’ll see the proof later.)
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Formal power series

Algebraic dependence for formal Laurent series

Let us specialize to the inclusion K (t) ⊂ K ((t)).

Question

Can one give an explicit description of those elements of K ((t)) which are
algebraic over K (t), analogous to the description of K (t) in terms of
coefficients?

Amazingly, when K is a finite field this question has an affirmative answer
in terms of combinatorics on words!
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Regular languages and finite automata

Regular languages

Fix a finite set Σ as the alphabet. Let Σ∗ denote the set of finite words on
Σ. A language on Σ is a subset L of Σ∗. We write xy for the
concatenation of the words x and y .

A deterministic finite automaton ∆ on Σ consists of a finite state set S ,
an initial state s0 ∈ S , and a transition function δ : S × Σ→ S . The
automaton induces a function g∆ : Σ∗ → S by

g∆(∅) = s0, g∆(xs) = δ(g∆(x), s).

Any language of the form g−1
∆ (S1) for some S1 ⊆ S is accepted by ∆.

Any language accepted by some automaton is said to be regular. It is
equivalent to ask that the language be accepted by some regular
expression or by some nondeterministic finite automaton. In particular,
reversing all strings in a regular language yields a regular language.
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Regular languages and finite automata

More on regular languages

Let L be a language on Σ. Define an equivalence relation on Σ∗ by
declaring that x ∼L y if and only if for all z ∈ Σ∗, xz ∈ L if and only if
yz ∈ L.

Theorem (Myhill-Nerode)

The language L is regular if and only if Σ∗ splits into finitely many
equivalence classes under ∼L.

Sketch of proof.

If L is accepted by a finite automaton, then any two words leading to the
same state are equivalent. Conversely, if there are finitely many
equivalence classes, these correspond to the states of a minimal finite
automaton which accepts L.
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Regular languages and finite automata

Regular functions

Let U be a finite set. Let f : Σ∗ → U be a function. Define another
equivalence relation on Σ∗ by declaring that x ∼f y if and only if for all
z ∈ Σ∗, f (xz) = f (yz).

We say that f is regular if f −1(u) is a regular language for all u ∈ U.
Equivalently, there exist an automaton ∆ = (S , s0, δ) and a function
h : S → U such that f = h ◦ g∆ (in which case we say that ∆ accepts f ).

Theorem (Myhill-Nerode for functions)

The function f is regular if and only if Σ∗ splits into finitely many
equivalence classes under ∼f .

Sketch of proof.

Similar.
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The theorem of Christol

Finite fields

For the remainder of these two talks, fix a prime number p > 0 and let q
be a power of p. Up to isomorphism, there is a unique finite field of q
elements, which we denote by Fq. (This object is not unique up to unique
isomorphism, but never mind.)

Every finite extension of Fq is again a finite field, and thus isomorphic to
Fq′ where q′ must be a power of q. Conversely, every power of q as the
cardinality of a finite extension of Fq.

For example, we can write

F4
∼= (Z/2Z)[z ]/(z2 + z + 1)

F9
∼= (Z/3Z)]z ]/(z2 + 1).
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The theorem of Christol

Frobenius

Since Fq is of characteristic p, the Frobenius map x 7→ xp is a ring
homomorphism. It is also injective, so it is in fact a field automorphism.

We will use frequently the fact that the p-th power map also induces a
Frobenius endomorphism on Fq(t) and Fq((t)). These maps are injective
but not surjective: an element of Fq(t) (resp. Fq((t))) is a p-th power if
and only if it is a rational function (resp. Laurent series) in tp.
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The theorem of Christol

The theorem of Christol

Fix the alphabet Σ = {0, . . . , p − 1}. We may identify nonnegative
integers with words on Σ using base-p expansions. We will allow arbitrary
leading zeroes.

For f =
∑

n∈Z fntn ∈ Fq((t)), we identify f with a function f : Σ∗ → Fq

taking a base-p expansion of n (with any number of leading zeroes) to fn.
We say f ∈ Fq((t)) is automatic if the corresponding function
f : Σ∗ → Fq is regular.

Theorem (Christol, 1979; Christol–Kamae–Mendès France–Rauzy, 1980)

A formal Laurent series is algebraic over Fq(t) if and only if it is automatic.
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The theorem of Christol

Example: the Thue-Morse sequence

Take f =
∑∞

n=0 fntn ∈ F2((t)) with

fn =

{
1 if the number of 1’s in the base-2 expansion of n is even

0 otherwise.

Then f is automatic, e.g., for the regular expression

0∗(10∗10∗)∗

or the DFA

start
��
10 77

1 // 0
1
oo 0gg

and f is algebraic:

(1 + t)3f 2 + (1 + t)2f + t = 0.
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The theorem of Christol

Example: from the Putnam competition

Problem (1989 Putnam competition, problem A6)

Let α = 1 + a1x + a2x2 + · · · be a formal power series with coefficients in
the field of two elements. Let

an =

1
if every block of zeros in the binary expansion of n has an even
number of zeros in the block

0 otherwise.

Prove that α3 + xα + 1 = 0.
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The theorem of Christol

Application: the Hadamard product

For f =
∑

n∈Z fntn, g =
∑

n∈Z gntn ∈ Fq((t)), define the Hadamard
product

f � g =
∑
n∈Z

fngntn.

Theorem (Furstenberg, 1967)

If f , g ∈ Fq((t)) are algebraic over Fq(t), then so is f � g.

Sketch of proof.

Check the analogous assertion for automatic sequences, which is easy. See
Allouche–Shallit, Theorem 12.2.6.

Note that Fq is special: over Q(t), f is algebraic but not f � f for

f = (1− 4t)−1/2 =
∞∑
n=0

(
2n

n

)
tn.
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The theorem of Christol

Application: diagonals

Theorem (Furstenberg, 1967 for f ∈ Fq(t, u); Deligne, 1984)

Let f =
∑∞

m,n=0 fmntmun be a bivariate formal power series over Fq which
is algebraic over Fq(t, u). Then the diagonal series

∑∞
n=0 fnntn is algebraic

over Fq(t).

Proof.

This follows from a multivariate analogue of Christol’s theorem. See
Allouche–Shallit, Theorem 14.4.2.

Conversely, every power series algebraic over Fq(t) arises as the diagonal
of some f ∈ Fq(t, u) (Furstenberg, 1967). See Allouche-Shallit, Theorem
12.7.3.
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The theorem of Christol

Application: transcendence results

The existence of Christol’s theorem makes it possible to prove much better
transcendence results over Fq(t) than over Q.

Theorem (Wade, 1941; Allouche, 1990 using Christol)

The “Carlitz π”

πq =
∞∏
k=1

(
1− tq

k − t

tqk+1 − t

)
is transcendental over Fq(t).

Proof.

See Allouche–Shallit, Theorem 12.4.1.
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Proof of Christol’s theorem: automatic implies algebraic
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Proof of Christol’s theorem: automatic implies algebraic

Algebraicity in characteristic p

Recall that f ∈ Fq((t)) is algebraic over Fq(t) if and only if the powers of
f all lie in a finite dimensional Fq(t)-subspace of Fq((t)). The following
variant (with the same proof) will be useful.

Proposition (Ore)

The element f ∈ Fq((t)) is algebraic over Fq(t) if and only if

f , f p, f p2
, . . . all belong to a finite-dimensional Fq(t)-subspace of Fq((t)).

Proof.

If f is a root of a monic polynomial P of degree d over Fq(t), then every
power of f belongs to the Fq(t)-linear span of 1, f , . . . , f d−1. Conversely,

if the inclusion holds, then any linear dependence among f , f p, f p2
, . . .

gives rise to a polynomial over Fq(t) having f as a root.
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Proof of Christol’s theorem: automatic implies algebraic

Automatic implies algebraic

Let f =
∑

n∈Z fntn ∈ Fq((t)) be automatic. Choose an automaton
∆ = (S , s0, δ) and a function h : S → Fq such that f = h ◦ g∆. Define

es =
∑

n≥0,g∆(n)=s

tn (s ∈ S).

Note that
f =

∑
s∈S

h(s)es ,

so it suffices to check that the es are algebraic. The key relation is

es =
∑

s′∈S ,i∈{0,...,p−1}:δ(s′,i)=s

eps′t
i .

(This is correct even for s = s0 because we must have δ(s0, 0) = s0.)
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Proof of Christol’s theorem: automatic implies algebraic

Automatic implies algebraic (continued)

Since we are in characteristic p, the p-th power map is an automorphism.
Hence for each m ≥ 0,

ep
m

s =
∑

s′,i :δ(s′,i)=s

ep
m+1

s′ t ip
m
.

Therefore ep
m

s is contained in the Fq(t)-span of the ep
m+1

s′ .

By induction, {ep
i

s : s ∈ S , i = 0, . . . ,m} is contained in the Fq(t)-span of

{ep
m

s : s ∈ S}. In particular, es , e
p
s , . . . , e

pm
s belong to an Fq(t)-vector

space whose dimension is bounded independent of m. It follows that es is
algebraic, as then is f .
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Proof of Christol’s theorem: algebraic implies automatic

Decimation of power series

The proof in this direction uses a criterion for automaticity analogous to
that of algebraicity, except with the p-th power map replaced by some
maps in the opposite direction.

Lemma

For f ∈ Fq((t)), there is a unique way to write

f = d0(f )p + td1(f )p + · · ·+ tp−1dp−1(f )p

with d0(f ), . . . , dp−1(f ) ∈ Fq((t)).

Proof.

Sort the terms of f by their degree modulo p, then recall that an element
of Fq((t)) is a power series in tp if and only if it is a p-th power.
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Proof of Christol’s theorem: algebraic implies automatic

Decimation and automaticity

We view d0, . . . , dp−1 as maps from Fq((t)) to itself. These maps are
additive:

di (f + g) = di (f ) + di (g) (f , g ∈ Fq((t))).

but not multiplicative per se. Something similar is true, though:

di (f pg) = fdi (g) (f , g ∈ Fq((t))).

Using the di , we can give a finiteness criterion for automaticity.

Proposition

For f ∈ Fq((t)), f is automatic if and only if f is contained in a finite
subset of Fq((t)) closed under di for i = 0, . . . , p − 1.

Proof.

This is a reformulation of Myhill-Nerode.
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Proof of Christol’s theorem: algebraic implies automatic

Decimation of rational functions

We define the degree of a nonzero rational function f ∈ Fq(t) by writing
f = g/h with g , h ∈ Fq[t] nonzero and coprime, then putting

deg(f ) = max{deg(g), deg(h)}.

By convention, deg(0) = −∞.

Lemma

For f ∈ Fq(t) and i = 0, . . . , p − 1, we have di (f ) ∈ Fq(t) and
deg(di (f )) ≤ deg(f ).

Proof.

We have
di (f ) = di (ghp−1/hp) = di (ghp−1)/h

and deg(di (ghp−1)) ≤ deg(ghp−1)/p ≤ deg(f ).
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Proof of Christol’s theorem: algebraic implies automatic

More on algebraicity in characteristic p

Proposition (Ore)

If f ∈ Fq((t)) is algebraic over Fq(t), then f is in the Fq(t)-span of

f p, f p2
, . . . .

Proof.

We have a relation

f pl = h1f pl+1
+ · · ·+ hmf pl+m

for some l ,m ≥ 0 and h1, . . . , hm ∈ Fq(t). If l > 0, then also

f pl−1
= d0(h1)f pl + · · ·+ d0(hm)f pl+m−1

,

so we may force l = 0.
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Proof of Christol’s theorem: algebraic implies automatic

Algebraic implies automatic

Suppose that f ∈ Fq((t)) is algebraic. We then have

f = h1f p + · · ·+ hmf pm

for some h1, . . . , hm ∈ Fq(t). Put H = maxj{deg(hj)} and

G = {g ∈ Fq((t)) : g =
m∑
j=0

ej f
pj , ej ∈ Fq(t), deg(ej) ≤ H}.

Each ej is limited to a finite set, so G is finite. But for g ∈ G and
i = 0, . . . , p − 1,

di (g) = di

 m∑
j=1

(ej + e0hj)f pj

 =
m∑
j=1

di (ej + e0hj)f pj−1 ∈ G .

Hence f belongs to a finite set closed under the di , so is automatic.
Kiran S. Kedlaya (UCSD) Christol’s theorem, part 1 Toronto, April 26, 2013 30 / 32



Proof of Christol’s theorem: algebraic implies automatic

Algebraic implies automatic

Suppose that f ∈ Fq((t)) is algebraic. We then have

f = h1f p + · · ·+ hmf pm

for some h1, . . . , hm ∈ Fq(t). Put H = maxj{deg(hj)} and

G = {g ∈ Fq((t)) : g =
m∑
j=0

ej f
pj , ej ∈ Fq(t), deg(ej) ≤ H}.

Each ej is limited to a finite set, so G is finite. But for g ∈ G and
i = 0, . . . , p − 1,

di (g) = di

 m∑
j=1

(ej + e0hj)f pj

 =
m∑
j=1

di (ej + e0hj)f pj−1 ∈ G .

Hence f belongs to a finite set closed under the di , so is automatic.
Kiran S. Kedlaya (UCSD) Christol’s theorem, part 1 Toronto, April 26, 2013 30 / 32



Preview of part 2

Contents

1 Formal power series

2 Regular languages and finite automata

3 The theorem of Christol

4 Proof of Christol’s theorem: automatic implies algebraic

5 Proof of Christol’s theorem: algebraic implies automatic

6 Preview of part 2

Kiran S. Kedlaya (UCSD) Christol’s theorem, part 1 Toronto, April 26, 2013 31 / 32



Preview of part 2

Preview of part 2

While Christol’s theorem identifies the elements of Fq((t)) which are
algebraic over Fq(t), this is not enough to describe a full algebraic closure
of Fq(t). That is, there are nonconstant polynomials over Fq(t) with no
roots over Fq((t)).

In part 2, we will see how to replace the field Fq((t)) by a field of
generalized power series so that the analogue of Christol’s theorem holds
and does determine a full algebraic closure of Fq(t).
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