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Zipping sequences

Zipping sequences

Uu=ag.dy.azx....
v=>by:b:b:...

results in

zip(u,v) =ap:bg:ay:byax:by:...

Operationally:

zip(a: u,v) — a:zip(v, u)



Zip-specifications

Peaks = A : Peaks

Valleys = V : Valleys
Tyrol = zip(Peaks, Valleys)
Folds = zip(Tyrol, Folds)
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Zip-specifications

Z

Peaks = A : Peaks =A:A:A
Valleys = V : Valleys =V:V:V:..
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Zip-specifications

z

Peaks = A : Peaks =AN:NA:A
Valleys = V : Valleys =V:V:V
Tyrol = zip(Peaks, Valleys) =A:V:A:V:A:V:.
Folds = zip(Tyrol, Folds) =A:A:V:A:A:V:V:A:AN:A:V:

A zip-specification over (A, X) is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

tz=X|a:t]zip(t,t) (XeX, acA)



Well-definedness of zip-specifications

Productivity (implies unique solvability) for a zip-specification is easy to
check: at least one guard on every leftmost cycle.

Example
X =1zip(1:X,Y)
Y = zip(Z, X)




Well-definedness of zip-specifications

Productivity (implies unique solvability) for a zip-specification is easy to
check: at least one guard on every leftmost cycle.

Example

X =zip(1:X,Y)

Y = zip(Z, X)

Z =zip(Y,0:7) No guard on cycle

Y >Z—=>Y
Not productive!




Initial Motivation

Initial Questions

> Is equivalence of zip-specifications decidable? (L.S. Moss)

» What is the class of sequences that can be defined by
zip-specifications?



Unzipping

Using ‘zip-destructors’

even(w) = w(0): w(2): w(4):...
odd(w) = w(l): w(3):w(5):...

unzipping can be done:

even(zip(u,v)) = u
odd(zip(u, v)) =

<

Operational definition:
even(a: u) = a:odd(u)

odd(a: u) = even(u)

Idea: use even, odd to observe zip-specs and check bisimilarity of the
resulting graphs.



Observation graph of Folds zip-specification

(even/odd)-observation graph
even, odd

even
odd

even, odd

Folds = zip(Tyrol, Folds)
Tyrol = zip(Peaks, Valleys)
Peaks = A : Peaks

Valleys = V : Valleys

Folds = AA:V:A:A:V:V:A:N:AN:V:V:AN:V:V:A...



Finite automaton generating the paperfolding sequence

|=

7
~

Folds 2 AA:V:A:A:V:V:A:N:AN:V:V:AN:V:V:A...



Finite automaton generating the paperfolding sequence

2-DFAO (DFA with output) 0.1

((9)2)Foids = (1001)Fojds EN (100)Folds 5 (10)1yrol &N (1)peaks EN ()peaks

Folds—>°“/\:/\:\/:/\:/\:\/:\/:/\:/\::\/:\/:/\:V:\/:/\...



Generalization to k-automatic sequences

A zip-k specification over (A, X) is a system of equations X = t where
the right-hand sides t are terms defined by

tu=X|a:t]zipg(t,...,t) (XeX, acA)

where zip, shuffles k sequences
zip(uo, U1, - -« s ug—1)(kn+ i) = u;(n) (0<i<k)
Operationally:
zipe(a: ug, un, ..., uk—1) = a:zip,(u1, ..., Uk—1, Ug)

Theorem

A sequence k-automatic if and only if it has a zip-k specification.

Hence equivalence of zip-k specifications is decidable.



Mix-automatic sequences

Motivating question

What about zips of different arities in one specification?
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Mix-automatic sequences

Zip-mix specifications: now we allow zips of different arities zip,, zips,
zZipy, ... in the same specification.

Example
M=a:X X = b:zipy(X,Y) Y = b:zip3(M,Y,Y)

M—=“a:b:b:b:b:a:b:b:b:b:a:b:b:a:b:a:...

We call the corresponding sequences mix-automatic sequences.

» What is the relation to automatic or morphic sequences?
» What about subword complexity?

» What is the corresponding notion of automaton?



Mix-automatic extends automatic

Theorem
The class of mix-automatic sequences properly extends the class of
automatic sequences.

Proof: Let u and v be 2 and 3-automatic, but not ultimately periodic. If
the sequence zip(u, v) would be m-automatic, then so would be v and v.
By Cobham's Theorem there are a, b, ¢, d > 0 such that

> 22 = mP and
> 3¢ =mI.

But then 229 = mP? = 3¢ yjelds a contradiction.

Theorem (Cobham's Theorem)

Let k,¢ > 2 such that k? # (° for all a,b > 0. If a sequence u is both k-
and (-automatic, then u is ultimately periodic.



Characterization via automata

The automata corresponding to mix-automatic sequences are
mix-DFAQOs with a state-dependent input alphabet.
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0 0, 1
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Characterization via automata

The automata corresponding to mix-automatic sequences are
mix-DFAQs with a state-dependent input alphabet.

Example

M=a:X X' =b:zipy(X,Y) Y = b:zip3(M,Y,Y)

The specification corresponds to the mix-DFAO
0 0, 1

/\;‘
—
The input alphabet of qg is {0,1} and of g; is {0,1,2}.

Input: representation of i € N What is this representation?
Output: j-th element of the sequence
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Number representation for mix-DFAQOs

Mix-DFAOs are known:
» intensively studied by Rigo, Maes, ...
» used with abstract numeration systems

Abstract numeration systems

Let L be the language accepted as input by the automaton.
Then i € N is represented by the i-th word of L in the shortlex order.

Mix-DFAOs + abstract numeration systems =  morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems

» generalizes usual base-k representation

» generalizes Knuth's mixed radix numeration system

The base of a digit depends on the values of the less significant digits.



Dynamic radix numeration systems
0 0,1
() .+ O
>
—_—>
D —)

2



Dynamic radix numeration systems

0 0,1
m 1 m
— @ (@) m
2

We write (n)y = (n)g, for the representation of n € N as input for M.
The automaton reads the least significant digit first:

(A7)m = (17)gq

(we write the base of each digit as subscript of the digit)



Dynamic radix numeration systems

0 0,1
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We write (n)y = (n)g, for the representation of n € N as input for M.
The automaton reads the least significant digit first:

(17)m = (17)q, (16)m = (16)q,
= (8)q1 1> = (8)qo 02
=(2)q0 2312 = (4)q, 0202
=(1)g 022512 =(2)g, 02020,
= (0)g, 12022515 = (1)g, 02020202
=15,0,231, = 150205050,

(we write the base of each digit as subscript of the digit)



Dynamic radix numeration systems

0 01

A
ﬁ/\“M

We write (n)y = (n)g, for the representation of n € N as input for M.
The automaton reads the least significant digit first:

(17)m = (17)qo (16)m = (16)qq
= (8)q1 12 = (8)qo 02
= (2)qo 231 (4)qo 02 02
=(1)g 022512 =(2)g, 02020,
= (0)g, 12022515 = (1)g, 02020202
=1502231, =150202020

(we write the base of each digit as subscript of the digit)

Mix-DFAOs + dynamic radix numeration systems =  mix-automatic



Characterization via finite kernels

For i, k € N and sequences w we define
Tik(w) = w(i+0k) w(i+ 1k) w(i + 2k) w(i+3k)...

the subsequence of w taking every k-th element starting from the i-th.

Kernel

Let k € Nand w € A¥.

The k-kernel Ker(k, w) is the smallest set K C A“ such that:
» we K, and
» forall v € K and all 0 < i < k, we have 7; «(u) € K.

Theorem
For a sequence w € A¥ the following are equivalent:
> w Is automatic,

> there exists k € N>o such that the k-kernel of w is finite.
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For i, k € N and sequences w we define
Tik(w) = w(i+0k) w(i+ 1k) w(i + 2k) w(i+3k)...

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel

Let k: AY — N and w € A¥.

The k-kernel Ker(k, w) is the smallest set K C A“ such that:
» we K, and
» forall v € K and all 0 < i < k, we have 7; «(u) € K.

Theorem
For a sequence w € A¥ the following are equivalent:
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Characterization via finite kernels

For i, k € N and sequences w we define
mik(w) = w(i + 0k) w(i+ 1k) w(i+ 2k) w(i+ 3k)...

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel

Let k: AY — N and w € A¥.

The k-kernel Ker(k, w) is the smallest set K C A“ such that:
» w e K, and
» forall v € K and all 0 </ < k(u), we have 7 () (u) € K.

Theorem
For a sequence w € A¥ the following are equivalent:
> w is automatic,

> there exists k € N>, such that the k-kernel of w is finite.



Characterization via finite kernels

For i, k € N and sequences w we define
mik(w) = w(i + 0k) w(i+ 1k) w(i+ 2k) w(i+ 3k)...

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel

Let k: AY — N and w € A¥.

The k-kernel Ker(k, w) is the smallest set K C A“ such that:
» w e K, and
» forall v € K and all 0 </ < k(u), we have 7 () (u) € K.

Theorem
For a sequence w € A¥ the following are equivalent:
> W is mix-automatic,

> there exists k : A¥ — N>, such that the k-kernel of w is finite.



Mix-automatic versus morphic sequences

Proposition
The class of morphic sequences is not contained in the class of
mix-automatic sequences.

For the characteristic sequence squares = 1100100001 ... of square
numbers is morphic but not mix-automatic.



Mix-automatic versus morphic sequences

Proposition
The class of morphic sequences is not contained in the class of
mix-automatic sequences.

For the characteristic sequence squares = 1100100001 ... of square
numbers is morphic but not mix-automatic.

Corollary

Neither of the classes
» mix-automatic sequences, and
» morphic sequences

subsumes the other.



Subword complexity of mix-automatic sequences

Theorem

For any k € N there exists a mix-automatic sequences with subword

complexity in Q(n*).

Proof idea: For p a prime number, define the sequence 7, € 2 by
Yp(n) = vp(n) mod 2 where  v,(n) = max{e | p° divides n}

Then v, is p-automatic: v, = zip,(0“,0¥,...,0%,7;).
Let p1, po, - .., px pairwise distinct primes. The sequence

g = Zipk(ﬁ)/Pl’ s 7’VPI<)
is mix-automatic. For subword complexity in Q(n*), it suffices that
» for all n €N, and
» for all factors wy in vp,, ..., Wk in vp, of length n,
zipy(wi, ..., wy) is a factor in o.



Subword complexity of mix-automatic sequences

Theorem

For any k € N there exists a mix-automatic sequences with subword
complexity in Q(n*).

Proof idea: For p a prime number, define the sequence 7, € 2 by
Yp(n) = vp(n) mod 2 where  v,(n) = max{e | p° divides n}

Then v, is p-automatic: v, = zip,(0“,0¥,...,0%,7;).

Let p1, po, - .., px pairwise distinct primes. The sequence

0= Zipk(ﬁ)/Pl’ e 7’VPI<)

is mix-automatic. For subword complexity in Q(n*), it suffices that
» for all n €N, and

» for all factors wy in vp,, ..., Wk in vp, of length n,
zipy(wi, ..., wy) is a factor in o.
Corollary

There are mix-automatic sequences that are not morphic.



Results and open questions

Results:
» Characterizations of mix-automatic sequences:
© via zip-mix specifications
@ via a generalization of k-kernels
© via mix-DFAOs + dynamic radix numeration systems

» Novel numeration system: dynamic radix numeration systems

» For every polynomial p there exists a mix-automatic sequence whose
subword complexity exceeds p.

» There exist morphic sequences that are not mix-automatic.

Questions:
» Characterize the intersection of mix-automatic and morphic
sequences. (J.-P. Allouche)

» Is equality of mix-automatic sequences decidable?
(the sequences are given in terms of their mix-DFAQOs)

» Can Cobham's Theorem be generalized to mix-automatic sequences?
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