
Mix-Automatic Sequences

Jörg Endrullis Clemens Grabmayer Dimitri Hendriks

Fields Workshop on Combinatorics on Words
Toronto, April 22, 2013

Zipping sequences

Zipping sequences

u = a0 : a1 : a2 : . . .

v = b0 : b1 : b2 : . . .

results in

zip(u, v) = a0 : b0 : a1 : b1 : a2 : b2 : . . .

Operationally:

zip(a : u, v)→ a : zip(v , u)

Zip-specifications

Peaks = ∧ : Peaks

= ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys

= ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys)

= ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds)

= ∧ :

∧

: ∨ :

∧

: ∧ :

∨

: ∨ :

∧

: ∧ :

∧

: ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Zip-specifications

Peaks = ∧ : Peaks = ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys = ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys)

= ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds)

= ∧ :

∧

: ∨ :

∧

: ∧ :

∨

: ∨ :

∧

: ∧ :

∧

: ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Zip-specifications

Peaks = ∧ : Peaks = ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys = ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys) = ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds)

= ∧ :

∧

: ∨ :

∧

: ∧ :

∨

: ∨ :

∧

: ∧ :

∧

: ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Zip-specifications

Peaks = ∧ : Peaks = ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys = ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys) = ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds) = ∧ :

∧

: ∨ :

∧

: ∧ :

∨

: ∨ :

∧

: ∧ :

∧

: ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Zip-specifications

Peaks = ∧ : Peaks = ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys = ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys) = ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds) = ∧ : ∧ : ∨ :

∧

: ∧ :

∨

: ∨ :

∧

: ∧ :

∧

: ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Zip-specifications

Peaks = ∧ : Peaks = ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys = ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys) = ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds) = ∧ : ∧ : ∨ : ∧ : ∧ :

∨

: ∨ :

∧

: ∧ :

∧

: ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Zip-specifications

Peaks = ∧ : Peaks = ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys = ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys) = ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds) = ∧ : ∧ : ∨ : ∧ : ∧ : ∨ : ∨ :

∧

: ∧ :

∧

: ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Zip-specifications

Peaks = ∧ : Peaks = ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys = ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys) = ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds) = ∧ : ∧ : ∨ : ∧ : ∧ : ∨ : ∨ : ∧ : ∧ :

∧

: ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Zip-specifications

Peaks = ∧ : Peaks = ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys = ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys) = ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds) = ∧ : ∧ : ∨ : ∧ : ∧ : ∨ : ∨ : ∧ : ∧ : ∧ : ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Zip-specifications

Peaks = ∧ : Peaks = ∧ : ∧ : ∧ : . . .

Valleys = ∨ : Valleys = ∨ : ∨ : ∨ : . . .

Tyrol = zip(Peaks,Valleys) = ∧ : ∨ : ∧ : ∨ : ∧ : ∨ : . . .

Folds = zip(Tyrol,Folds) = ∧ : ∧ : ∨ : ∧ : ∧ : ∨ : ∨ : ∧ : ∧ : ∧ : ∨ : . . .

A zip-specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by the grammar

t ::= X | a : t | zip(t, t) (X ∈ X , a ∈ A)

Well-definedness of zip-specifications

Productivity (implies unique solvability) for a zip-specification is easy to
check: at least one guard on every leftmost cycle.

Example

X = zip(1 : X,Y)

Y = zip(Z,X)

Z = zip(Y, 0 : Z)

zip

X

zip
Y

zip
Z

1

0

No guard on cycle
Y → Z→ Y

Not productive!

Well-definedness of zip-specifications

Productivity (implies unique solvability) for a zip-specification is easy to
check: at least one guard on every leftmost cycle.

Example

X = zip(1 : X,Y)

Y = zip(Z,X)

Z = zip(Y, 0 : Z)

zip

X

zip
Y

zip
Z

1

0

No guard on cycle
Y → Z→ Y

Not productive!

Initial Motivation

Initial Questions
I Is equivalence of zip-specifications decidable? (L.S. Moss)

I What is the class of sequences that can be defined by
zip-specifications?

Unzipping

Using ‘zip-destructors’

even(w) = w(0) : w(2) : w(4) : . . .

odd(w) = w(1) : w(3) : w(5) : . . .

unzipping can be done:

even(zip(u, v)) = u

odd(zip(u, v)) = v

Operational definition:
even(a : u) = a : odd(u)

odd(a : u) = even(u)

Idea: use even, odd to observe zip-specs and check bisimilarity of the
resulting graphs.

Observation graph of Folds zip-specification

(even/odd)-observation graph

Folds /∧odd Tyrol /∧

Peaks /∧

Valleys /∨

even

even

odd

even, odd

even, odd

Folds = zip(Tyrol,Folds)
Tyrol = zip(Peaks,Valleys)
Peaks = ∧ : Peaks
Valleys = ∨ : Valleys

Folds→ω ∧ : ∧ : ∨ : ∧ : ∧ : ∨ : ∨ : ∧ : ∧ : ∧ : ∨ : ∨ : ∧ : ∨ : ∨ : ∧ . . .

Finite automaton generating the paperfolding sequence

2-DFAO (DFA with output)

Folds /∧1 Tyrol /∧

Peaks /∧

Valleys /∨

0

0

1

0, 1

0, 1

Aha!

Folds→ω ∧ : ∧ : ∨ : ∧ : ∧ : ∨ : ∨ : ∧ : ∧ : ∧ : ∨ : ∨ : ∧ : ∨ : ∨ : ∧ . . .

Finite automaton generating the paperfolding sequence

2-DFAO (DFA with output)

Folds /∧1 Tyrol /∧

Peaks /∧

Valleys /∨

0

0

1

0, 1

0, 1

((9)2)Folds = (1001)Folds
1→ (100)Folds

0→ (10)Tyrol
0→ (1)Peaks

1→ ()Peaks

Folds→ω ∧ : ∧ : ∨ : ∧ : ∧ : ∨ : ∨ : ∧ : ∧ : ∧ : ∨ : ∨ : ∧ : ∨ : ∨ : ∧ . . .

Generalization to k-automatic sequences

A zip-k specification over 〈A,X〉 is a system of equations X = t where
the right-hand sides t are terms defined by

t ::= X | a : t | zipk(t, . . . , t) (X ∈ X , a ∈ A)

where zipk shuffles k sequences

zipk(u0, u1, . . . , uk−1)(kn + i) = ui (n) (0 ≤ i < k)

Operationally:

zipk(a : u0, u1, . . . , uk−1) = a : zipk(u1, . . . , uk−1, u0)

Theorem
A sequence k-automatic if and only if it has a zip-k specification.

Hence equivalence of zip-k specifications is decidable.

Mix-automatic sequences

Motivating question
What about zips of different arities in one specification?

Mix-automatic sequences

Zip-mix specifications: now we allow zips of different arities zip2, zip3,
zip4, . . . in the same specification.

Example

M = a : X X = b : zip2(X,Y) Y = b : zip3(M,Y,Y)

M→ω a : b : b : b : b : a : b : b : b : b : a : b : b : a : b : a : . . .

We call the corresponding sequences mix-automatic sequences.

I What is the relation to automatic or morphic sequences?
I What about subword complexity?
I What is the corresponding notion of automaton?

Mix-automatic sequences

Zip-mix specifications: now we allow zips of different arities zip2, zip3,
zip4, . . . in the same specification.

Example

M = a : X X = b : zip2(X,Y) Y = b : zip3(M,Y,Y)

M→ω a : b : b : b : b : a : b : b : b : b : a : b : b : a : b : a : . . .

We call the corresponding sequences mix-automatic sequences.

I What is the relation to automatic or morphic sequences?
I What about subword complexity?
I What is the corresponding notion of automaton?

Mix-automatic sequences

Zip-mix specifications: now we allow zips of different arities zip2, zip3,
zip4, . . . in the same specification.

Example

M = a : X X = b : zip2(X,Y) Y = b : zip3(M,Y,Y)

M→ω a : b : b : b : b : a : b : b : b : b : a : b : b : a : b : a : . . .

We call the corresponding sequences mix-automatic sequences.

I What is the relation to automatic or morphic sequences?
I What about subword complexity?
I What is the corresponding notion of automaton?

Mix-automatic sequences

Zip-mix specifications: now we allow zips of different arities zip2, zip3,
zip4, . . . in the same specification.

Example

M = a : X X = b : zip2(X,Y) Y = b : zip3(M,Y,Y)

M→ω a : b : b : b : b : a : b : b : b : b : a : b : b : a : b : a : . . .

We call the corresponding sequences mix-automatic sequences.

I What is the relation to automatic or morphic sequences?
I What about subword complexity?
I What is the corresponding notion of automaton?

Mix-automatic extends automatic

Theorem
The class of mix-automatic sequences properly extends the class of
automatic sequences.

Proof: Let u and v be 2 and 3-automatic, but not ultimately periodic. If
the sequence zip(u, v) would be m-automatic, then so would be u and v .
By Cobham’s Theorem there are a, b, c , d > 0 such that

I 2a = mb, and
I 3c = md .

But then 2ad = mbd = 3cb yields a contradiction.

Theorem (Cobham’s Theorem)

Let k, ` ≥ 2 such that ka 6= `b for all a, b > 0. If a sequence u is both k-
and `-automatic, then u is ultimately periodic.

Characterization via automata

The automata corresponding to mix-automatic sequences are
mix-DFAOs with a state-dependent input alphabet.

Example

M = a : X X = b : zip2(X,Y) Y = b : zip3(M,Y,Y)

The specification corresponds to the mix-DFAO

q0/a q1/b

0

1

0, 1

2

The input alphabet of q0 is {0, 1} and of q1 is {0, 1, 2}.

Input: representation of i ∈ N

What is this representation?

Output: i-th element of the sequence

Characterization via automata

The automata corresponding to mix-automatic sequences are
mix-DFAOs with a state-dependent input alphabet.

Example

M = a : X X = b : zip2(X,Y) Y = b : zip3(M,Y,Y)

The specification corresponds to the mix-DFAO

q0/a q1/b

0

1

0, 1

2

The input alphabet of q0 is {0, 1} and of q1 is {0, 1, 2}.

Input: representation of i ∈ N

What is this representation?

Output: i-th element of the sequence

Characterization via automata

The automata corresponding to mix-automatic sequences are
mix-DFAOs with a state-dependent input alphabet.

Example

M = a : X X = b : zip2(X,Y) Y = b : zip3(M,Y,Y)

The specification corresponds to the mix-DFAO

q0/a q1/b

0

1

0, 1

2

The input alphabet of q0 is {0, 1} and of q1 is {0, 1, 2}.

Input: representation of i ∈ N

What is this representation?

Output: i-th element of the sequence

Characterization via automata

The automata corresponding to mix-automatic sequences are
mix-DFAOs with a state-dependent input alphabet.

Example

M = a : X X = b : zip2(X,Y) Y = b : zip3(M,Y,Y)

The specification corresponds to the mix-DFAO

q0/a q1/b

0

1

0, 1

2

The input alphabet of q0 is {0, 1} and of q1 is {0, 1, 2}.

Input: representation of i ∈ N What is this representation?
Output: i-th element of the sequence

Number representation for mix-DFAOs

Mix-DFAOs are known:
I intensively studied by Rigo, Maes, . . .
I used with abstract numeration systems

Abstract numeration systems
Let L be the language accepted as input by the automaton.
Then i ∈ N is represented by the i-th word of L in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems
I generalizes usual base-k representation
I generalizes Knuth’s mixed radix numeration system

The base of a digit depends on the values of the less significant digits.

Number representation for mix-DFAOs

Mix-DFAOs are known:
I intensively studied by Rigo, Maes, . . .
I used with abstract numeration systems

Abstract numeration systems
Let L be the language accepted as input by the automaton.
Then i ∈ N is represented by the i-th word of L in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems
I generalizes usual base-k representation
I generalizes Knuth’s mixed radix numeration system

The base of a digit depends on the values of the less significant digits.

Number representation for mix-DFAOs

Mix-DFAOs are known:
I intensively studied by Rigo, Maes, . . .
I used with abstract numeration systems

Abstract numeration systems
Let L be the language accepted as input by the automaton.
Then i ∈ N is represented by the i-th word of L in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems
I generalizes usual base-k representation
I generalizes Knuth’s mixed radix numeration system

The base of a digit depends on the values of the less significant digits.

Number representation for mix-DFAOs

Mix-DFAOs are known:
I intensively studied by Rigo, Maes, . . .
I used with abstract numeration systems

Abstract numeration systems
Let L be the language accepted as input by the automaton.
Then i ∈ N is represented by the i-th word of L in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems
I generalizes usual base-k representation
I generalizes Knuth’s mixed radix numeration system

The base of a digit depends on the values of the less significant digits.

Number representation for mix-DFAOs

Mix-DFAOs are known:
I intensively studied by Rigo, Maes, . . .
I used with abstract numeration systems

Abstract numeration systems
Let L be the language accepted as input by the automaton.
Then i ∈ N is represented by the i-th word of L in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems

I generalizes usual base-k representation
I generalizes Knuth’s mixed radix numeration system

The base of a digit depends on the values of the less significant digits.

Number representation for mix-DFAOs

Mix-DFAOs are known:
I intensively studied by Rigo, Maes, . . .
I used with abstract numeration systems

Abstract numeration systems
Let L be the language accepted as input by the automaton.
Then i ∈ N is represented by the i-th word of L in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems
I generalizes usual base-k representation

I generalizes Knuth’s mixed radix numeration system

The base of a digit depends on the values of the less significant digits.

Number representation for mix-DFAOs

Mix-DFAOs are known:
I intensively studied by Rigo, Maes, . . .
I used with abstract numeration systems

Abstract numeration systems
Let L be the language accepted as input by the automaton.
Then i ∈ N is represented by the i-th word of L in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems
I generalizes usual base-k representation
I generalizes Knuth’s mixed radix numeration system

The base of a digit depends on the values of the less significant digits.

Number representation for mix-DFAOs

Mix-DFAOs are known:
I intensively studied by Rigo, Maes, . . .
I used with abstract numeration systems

Abstract numeration systems
Let L be the language accepted as input by the automaton.
Then i ∈ N is represented by the i-th word of L in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems
I generalizes usual base-k representation
I generalizes Knuth’s mixed radix numeration system

The base of a digit depends on the values of the less significant digits.

Dynamic radix numeration systems

q0/a q1/b

0

1

0, 1

2
M

We write (n)M = (n)q0 for the representation of n ∈ N as input for M.
The automaton reads the least significant digit first:

(17)M = (17)q0

(16)M = (16)q0

= (8)q1 12

= (8)q0 02

= (2)q0 23 12

= (4)q0 02 02

= (1)q0 02 23 12

= (2)q0 02 02 02

= (0)q1 12 02 23 12

= (1)q0 02 02 02 02

= 12 02 23 12

= 12 02 02 02 02

(we write the base of each digit as subscript of the digit)

Mix-DFAOs + dynamic radix numeration systems = mix-automatic

Dynamic radix numeration systems

q0/a q1/b

0

1

0, 1

2
M

We write (n)M = (n)q0 for the representation of n ∈ N as input for M.
The automaton reads the least significant digit first:

(17)M = (17)q0

(16)M = (16)q0

= (8)q1 12

= (8)q0 02

= (2)q0 23 12

= (4)q0 02 02

= (1)q0 02 23 12

= (2)q0 02 02 02

= (0)q1 12 02 23 12

= (1)q0 02 02 02 02

= 12 02 23 12

= 12 02 02 02 02

(we write the base of each digit as subscript of the digit)

Mix-DFAOs + dynamic radix numeration systems = mix-automatic

Dynamic radix numeration systems

q0/a q1/b

0

1

0, 1

2
M

We write (n)M = (n)q0 for the representation of n ∈ N as input for M.
The automaton reads the least significant digit first:

(17)M = (17)q0 (16)M = (16)q0

= (8)q1 12 = (8)q0 02

= (2)q0 23 12 = (4)q0 02 02

= (1)q0 02 23 12 = (2)q0 02 02 02

= (0)q1 12 02 23 12 = (1)q0 02 02 02 02

= 12 02 23 12 = 12 02 02 02 02

(we write the base of each digit as subscript of the digit)

Mix-DFAOs + dynamic radix numeration systems = mix-automatic

Dynamic radix numeration systems

q0/a q1/b

0

1

0, 1

2
M

We write (n)M = (n)q0 for the representation of n ∈ N as input for M.
The automaton reads the least significant digit first:

(17)M = (17)q0 (16)M = (16)q0

= (8)q1 12 = (8)q0 02

= (2)q0 23 12 = (4)q0 02 02

= (1)q0 02 23 12 = (2)q0 02 02 02

= (0)q1 12 02 23 12 = (1)q0 02 02 02 02

= 12 02 23 12 = 12 02 02 02 02

(we write the base of each digit as subscript of the digit)

Mix-DFAOs + dynamic radix numeration systems = mix-automatic

Characterization via finite kernels

For i , k ∈ N and sequences w we define

πi,k(w) = w(i + 0k) w(i + 1k) w(i + 2k) w(i + 3k) . . .

the subsequence of w taking every k-th element starting from the i-th.

Kernel
Let k ∈ N and w ∈ ∆ω.

The k-kernel Ker(k,w) is the smallest set K ⊆ ∆ω such that:
I w ∈ K , and
I for all u ∈ K and all 0 ≤ i < k , we have πi,k(u) ∈ K .

Theorem
For a sequence w ∈ ∆ω the following are equivalent:

I w is automatic,
I there exists k ∈ N≥2 such that the k-kernel of w is finite.

Characterization via finite kernels

For i , k ∈ N and sequences w we define

πi,k(w) = w(i + 0k) w(i + 1k) w(i + 2k) w(i + 3k) . . .

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel
Let k ∈ N and w ∈ ∆ω.

The k-kernel Ker(k,w) is the smallest set K ⊆ ∆ω such that:
I w ∈ K , and
I for all u ∈ K and all 0 ≤ i < k , we have πi,k(u) ∈ K .

Theorem
For a sequence w ∈ ∆ω the following are equivalent:

I w is automatic,
I there exists k ∈ N≥2 such that the k-kernel of w is finite.

Characterization via finite kernels

For i , k ∈ N and sequences w we define

πi,k(w) = w(i + 0k) w(i + 1k) w(i + 2k) w(i + 3k) . . .

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel
Let k : ∆ω → N and w ∈ ∆ω.

The k-kernel Ker(k,w) is the smallest set K ⊆ ∆ω such that:
I w ∈ K , and
I for all u ∈ K and all 0 ≤ i < k , we have πi,k(u) ∈ K .

Theorem
For a sequence w ∈ ∆ω the following are equivalent:

I w is automatic,
I there exists k ∈ N≥2 such that the k-kernel of w is finite.

Characterization via finite kernels

For i , k ∈ N and sequences w we define

πi,k(w) = w(i + 0k) w(i + 1k) w(i + 2k) w(i + 3k) . . .

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel
Let k : ∆ω → N and w ∈ ∆ω.

The k-kernel Ker(k,w) is the smallest set K ⊆ ∆ω such that:
I w ∈ K , and
I for all u ∈ K and all 0 ≤ i < k(u), we have πi,k(u)(u) ∈ K .

Theorem
For a sequence w ∈ ∆ω the following are equivalent:

I w is automatic,
I there exists k ∈ N≥2 such that the k-kernel of w is finite.

Characterization via finite kernels

For i , k ∈ N and sequences w we define

πi,k(w) = w(i + 0k) w(i + 1k) w(i + 2k) w(i + 3k) . . .

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel
Let k : ∆ω → N and w ∈ ∆ω.

The k-kernel Ker(k,w) is the smallest set K ⊆ ∆ω such that:
I w ∈ K , and
I for all u ∈ K and all 0 ≤ i < k(u), we have πi,k(u)(u) ∈ K .

Theorem
For a sequence w ∈ ∆ω the following are equivalent:

I w is mix-automatic,
I there exists k : ∆ω → N≥2 such that the k-kernel of w is finite.

Mix-automatic versus morphic sequences

Proposition
The class of morphic sequences is not contained in the class of
mix-automatic sequences.

For the characteristic sequence squares = 1100100001 . . . of square
numbers is morphic but not mix-automatic.

Corollary
Neither of the classes

I mix-automatic sequences, and
I morphic sequences

subsumes the other.

Mix-automatic versus morphic sequences

Proposition
The class of morphic sequences is not contained in the class of
mix-automatic sequences.

For the characteristic sequence squares = 1100100001 . . . of square
numbers is morphic but not mix-automatic.

Corollary
Neither of the classes

I mix-automatic sequences, and
I morphic sequences

subsumes the other.

Subword complexity of mix-automatic sequences

Theorem
For any k ∈ N there exists a mix-automatic sequences with subword
complexity in Ω(nk).

Proof idea: For p a prime number, define the sequence γp ∈ 2ω by

γp(n) = vp(n) mod 2 where vp(n) = max{e | pe divides n}
Then γp is p-automatic: γp = zipp(0ω, 0ω, . . . , 0ω, γp).

Let p1, p2, . . . , pk pairwise distinct primes. The sequence

σ = zipk(γp1 , . . . , γpk)

is mix-automatic. For subword complexity in Ω(nk), it suffices that
I for all n ∈ N, and
I for all factors w1 in γp1 , . . . , wk in γpk of length n,

zipk(w1, . . . ,wk) is a factor in σ.

Corollary
There are mix-automatic sequences that are not morphic.

Subword complexity of mix-automatic sequences

Theorem
For any k ∈ N there exists a mix-automatic sequences with subword
complexity in Ω(nk).

Proof idea: For p a prime number, define the sequence γp ∈ 2ω by

γp(n) = vp(n) mod 2 where vp(n) = max{e | pe divides n}
Then γp is p-automatic: γp = zipp(0ω, 0ω, . . . , 0ω, γp).

Let p1, p2, . . . , pk pairwise distinct primes. The sequence

σ = zipk(γp1 , . . . , γpk)

is mix-automatic. For subword complexity in Ω(nk), it suffices that
I for all n ∈ N, and
I for all factors w1 in γp1 , . . . , wk in γpk of length n,

zipk(w1, . . . ,wk) is a factor in σ.

Corollary
There are mix-automatic sequences that are not morphic.

Results and open questions

Results:
I Characterizations of mix-automatic sequences:

1 via zip-mix specifications
2 via a generalization of k-kernels
3 via mix-DFAOs + dynamic radix numeration systems

I Novel numeration system: dynamic radix numeration systems
I For every polynomial p there exists a mix-automatic sequence whose

subword complexity exceeds p.
I There exist morphic sequences that are not mix-automatic.

Questions:
I Characterize the intersection of mix-automatic and morphic

sequences. (J.-P. Allouche)

I Is equality of mix-automatic sequences decidable?
(the sequences are given in terms of their mix-DFAOs)

I Can Cobham’s Theorem be generalized to mix-automatic sequences?

Bibliography

[C69] On the Base-Dependence of Sets of Numbers Recognizable by
Finite Automata, MST, 1969

[C72] Uniform Tag Sequences, Theory of Computing Systems, 1972
[Rigo00] Generalization of Automatic Sequences for Numeration Systems

on a Regular Language, TCS, 2000
[AS03] Automatic Sequences: Theory, Applications, Generalizations,

CUP, 2003
[GEHKM12] Automatic Sequences and Zip-Specifications, LICS 2012

[KkR12] On the Final Coalgebra of Automatic Sequences, LPS, 2012
[EGH13] Mix-Automatic Sequences, LATA 2013

A = J.-P. Allouche, C = A. Cobham, E = J. Endrullis, G = C. Grabmayer,
H = D. Hendriks, K = J.W. Klop, Kk = C. Kupke,

M = L. Moss, Rigo = M. Rigo, R = J.J.M.M. Rutten, S = J. Shallit

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	anm1:

