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Comparing Streams

Goal
Measure the complexity of streams in terms of their infinite pattern.

Measure should be invariant under
I insertion/removal of finitely many elements
I change of alphabet

Shortcomings of existing complexity measures:
I Recursion theoretic degrees of unsolvability

All computable streams are identified.

I Kolmogorov complexity
Can be increased arbitrarily by finite insertions.

I Subword complexity

u = 0 1 0 0 0 1 1 . . .

w = 0 2 1 2 2 0 2 2 2 2 0 . . .

w contains u

but w has trivial complexity
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Finite State Transducers

We propose: comparison via finite state transducers (FSTs).

Example: FST computing the difference of consecutive elements

q0

q1

q2

0|ε

1|ε

1|10|1

1|0

0|0

input letter | output word along the edges

Transduces Thue-Morse sequence to period doubling sequence:

0 1 1 0 1 0 0 1 . . .
→ 1 0 1 1 1 0 1 . . .
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Degrees of Streams

Principle: M is at least as complex as N if it can be transformed to N

M . N ⇐⇒ there exists an FST transforming M into N

0 ultimately periodic

M W

sup? upper bound

Π
prime
(only 0 below itself)?

?

Partial order of degrees induced by ..

(degree is class of streams that can be transformed into each other)
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Initial Observations

Theorem
Every degree is countable.

There are uncountably many degrees.

Theorem
Every degree has only a countable number of degrees below itself.

upper bound

Theorem
A set of degrees has an upper bound⇐⇒ the set is countable.

zip(w0,zip(w1,zip(w2, . . .))) ,

w0(0) w1(0) w0(1) w2(0) w0(2) w1(1) w0(3) w3(0) w0(4) w1(2) w0(5) w2(1) . . .

Theorem
There are no maximal degrees.
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An Infinite Descending Chain

descending sequence
of degrees

q0 q1

1|1

1|ε

0|ε

0|0

Theorem
The following is an infinite descending sequence:

D0 = 1020
1021

1022
1023

1024
1025

1026
. . .

. D1 = 1020
1022

1024
1026

1028
10210

10212
. . .

. D2 = 1020
1024

1028
10212

10216
10220

10224
. . .

. . . .



An Infinite Ascending Chain

ascending sequence
of degrees q0 q1 q2

1|1 1|ε

0|0

0|0 0|ε

1|1

Theorem
The following is an infinite ascending sequence:

...

. A3 = 1(10)3 1(100)3 1(10000)3 1(100000000)3 . . .

. A2 = 1(10)2 1(100)2 1(10000)2 1(100000000)2 . . .

. A1 = 11011001100001100000000 . . .

. A0 = 111111 . . .



Prime Degrees

0 ultimately periodic streams (wuuu . . .)

prime degree
nothing in-between

Definition
A degree M 6= 0 is prime if there is no N between M and 0:

¬∃N. M . N . 0

Theorem
The degree of the following stream is prime:

Π = 10 100 1000 10000 100000 1 . . .

= 101 102 103 104 105 106 1 . . .



Prime Degrees

0 ultimately periodic streams (wuuu . . .)

prime degree
nothing in-between

Definition
A degree M 6= 0 is prime if there is no N between M and 0:

¬∃N. M . N . 0

Theorem
The degree of the following stream is prime:

Π = 10 100 1000 10000 100000 1 . . .

= 101 102 103 104 105 106 1 . . .



A Prime: Π = 1101001000100001000001 . . .

100000000000000000000 . . .
u v v

Let Z be the least common multiple of lengths of 0-loops in the FST.

Lemma
For all q ∈Q, n > |Q|, there exist u,v ∈ Γ∗ s.t. for all i ∈ N:

δ (q,10n+i ·Z ) = δ (q,10n) δ = state transition function

λ (q,10n+i ·Z ) = u v i
λ = output function

Proof.
Analogous to the pumping lemma for regular languages.
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A Prime: Π = 1101001000100001000001 . . .

Lemma
Every transduct of Π is of the form

w ·
∞

∏
i=0

wi where wi =
n−1

∏
j=0

uj ·v i
j

for some n ∈ N and finite words w ,uj ,vj .

Proof.
By the pigeonhole principle we find blocks 10k and 10` in Π s.t.:

I |Q|< k < `

I k ≡ ` mod Z
I automaton enters 10k and 10` with the same state q

Define n = `−k . Then Z | n and
I automaton also enters 10k+1 and 10`+1 in the same state q′

I k + 1≡ `+ 1 mod Z , . . .
For all i ∈ N, the blocks 10k+j+i ·n are entered in the same state.
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A Prime: Π = 1101001000100001000001 . . .

Theorem
The degree of Π = 10 100 1000 10000 100000 1 . . . is prime.

Proof.
We consider a transduct T of Π:

T = w ·
ω

∏
i=0

wi wi =
n

∏
j=0

uj ·v i
j

Removing ‘ambiguous’ factors, that is, factors j ≤ n for which:
I vω

j = uj+1vω

j+1 (here addition j + 1 is modulo n)

If everything is ambiguous, then T is ultimately periodic. Otherwise
we can choose the vj ,uj s.t. no uj+1 is not a prefix of vω

j .

An FST can detect all transitions
I from ujv i

j to uj+1v i
j+1, and thus

I from wi to wi+1

The function i 7→ |wi | is linear, so FST can transduce wi to 10i .
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Infima and Suprema

Theorem
There exist degrees X ,Y that have no supremum.

Theorem
There exist degrees X ,Y that have no infimum.

Idea: construct σ1,σ2,τ1,τ2 such that

τ1 τ2

σ1 σ2

∏
∞

i=0(022i
1033i

1) = = ∏
∞

i=0(033i
1022i

1)

∏
∞

i=0 022i
1 = = ∏

∞

i=0 033i
1

γ

and there exists no γ with the indicated properties.
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The Subhierarchy of Computable Streams
It is also interesting to look at subhierarchies. For example

I computable streams
I morphic streams

are closed under finite state transduction.

Theorem
The subhierarchy of computable streams has a top degree.

Shuffling all computable streams does not work
(the resulting stream is not computable).

Idea: for every Turing machine M define a stream

w(M) = xs(M,0)o(M,0) xs(M,1)o(M,1) xs(M,2)o(M,2) . . .

where x is a fresh symbol and
I o(M,n) = output of M on input n
I s(M,n) = number of steps of M until termination on input n

The shuffling of these streams is computable.
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Open questions

I How to prove non-transducibility (e.g. for morphic streams)?

I Are Thue-Morse and Mephisto Walz transducible to each other?

I How many prime degrees are out there?

I Is Thue-Morse prime?

I Are there degrees forming the following structures?

0 0

I When does a set of degrees have a supremum?

I What is the structure of the subhierarchy of computable streams?

I What is the structure of the subhierarchy of morphic streams?

I . . .


