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Introduction

Informally speaking, the essential dimension of an algebraic object
is the minimal number of independent parameters one needs to
define it. In the past 15 years this numerical invariant has been
extensively studied by a variety of algebraic, geometrc and
cohomological techniques. The goal of these lectures is to survey
some of this research.

Most of the material here is based on the expository paper I have
written for the 2010 ICM and the November 2012 issue of the
AMS Notices. See also a 2003 Documenta Math. article by G.
Berhuy and G. Favi, and a recent survey by A. Merkurjev (to
appear in the journal of Transformation Groups).
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First examples

To motivate the notion of essential dimension, I will start with
three simple examples.

In each example k will denote a field and K/k will be a field
extension. The objects of interest to us will always be defined over
K . In considering quadratic forms, I will always assume that
char(k) 6= 2, and in considering elliptic curves, I will assume that
char(k) 6= 2 or 3.
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Example 1: The essential dimension of a quadratic form

Let q be a non-degenerate quadratic form on Kd .

Denote the symmetric bilinear form associated to q by b. We
would like to know if q can be defined over (or equivalently,
descends to) some smaller field k ⊂ K0 ⊂ K .

This means that there is a K -basis e1, . . . , ed of Kd such that

bij := b(ei , ej) ∈ K0

for every i , j = 1, . . . , d .

Equivalently, in this basis q(x1, . . . , xn) =
∑n

i ,j=1 bijxixj has all of
its coefficients in K0.
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Example 1 continued: the essential dimension of a
quadratic form

It is natural to ask if there is a minimal field K0 (with respect to
inclusion) to which q descends. The answer is usually “no”.

So, we modify the question: instead of asking for a minimal field of
definition K0 for q, we ask for a field of definition K0 of minimal
transcendence degree.

The smallest possible value of trdegk(K0) is called the essential
dimension of q and is denoted by ed(q) or edk(q).
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Example 2: The essential dimension of a linear
transformation

Once again, let k be an arbitrary field, and K/k be a field
extension. Consider a linear transformation T : Kn → Kn. Here, as
usual, K -linear transformations are considered equivalent if their
matrices are conjugate over K . If T is represented by an n × n
matrix (aij) then T descends to K0 = k(aij | i , j = 1, . . . , n).

Once again, the smallest possible value of trdegk(K0) is called the
essential dimension of T and is denoted by ed(T ) or edk(T ). A
priori ed(T ) 6 n2.
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Example 2 continued

However, the obvious bound ed(T ) 6 n2. is not optimal. We can
specify T more economically by its rational canonical form R.
Recall that R is a block-diagonal matrix diag(R1, . . . ,Rm), where
each Ri is a companion matrix. If m = 1 and

R = R1 =

0 . . . 0 c1
1 . . . 0 c2

. . .
.
.
.

0 . . . 1 cn

, then T descends to k(c1, . . . , cn) and

thus ed(T ) 6 n.

A similar argument shows that ed(T ) 6 n for any m.



Example 2 continued

However, the obvious bound ed(T ) 6 n2. is not optimal. We can
specify T more economically by its rational canonical form R.
Recall that R is a block-diagonal matrix diag(R1, . . . ,Rm), where
each Ri is a companion matrix. If m = 1 and

R = R1 =

0 . . . 0 c1
1 . . . 0 c2

. . .
.
.
.

0 . . . 1 cn

, then T descends to k(c1, . . . , cn) and

thus ed(T ) 6 n.

A similar argument shows that ed(T ) 6 n for any m.



Example 3: The essential dimension of an elliptic curve

Let X be an elliptic curve curves defined over K . We say that X
descends to K0 ⊂ K , if X = X ×K K0 for some elliptic curve X0

defined over K0. The essential dimension ed(X ) is defined as the
minimal value of trdegk(K0), where X descends to K0.

Every elliptic curve X over K is isomorphic to the plane curve cut
out by a Weierstrass equation y2 = x3 + ax + b, for some
a, b ∈ K . Hence, X descends to K0 = k(a, b) and ed(X ) 6 2.
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Towards a more general definition

In a similar manner one can consider fields of definition of any
polynomial in K [x1, . . . , xn], any finite-dimensional K -algebra, any
algebraic variety defined over K , etc.

In each case the minimal transcendence degree of a field of
definition is an interesting numerical invariant which gives us some
insight into the “complexity” of the object in question.

We will now state this more formally.
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Covariant functors

Let k be a base field, Fieldsk be the category of field extensions
K/k , Sets be the category of sets, and

F : Fieldsk → Sets

be a covariant functor.

In Example 1, F(K ) is the set of K -isomorphism classes of
non-degenerate quadratic forms on Kn,

In Example 2, F(K ) is the set of equivalence classes of linear
transformations Kn → Kn.

In Example 3, F(K ) is the set of K -isomorphism classes of elliptic
curves defined over K .

In general we think of F as specifying the type of algebraic object
we want to work with, and elements of F(K ) as algebraic objects
of this type defined over K .
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The essential dimension of an object

Given a field extension K/k , we will say that an object α ∈ F(K )
descends to an intermediate field k ⊆ K0 ⊆ K if α is in the image
of the induced map F(K0)→ F(K ):

α0
// α

K0
// K .

The essential dimension ed(α) of α ∈ F(K ) is the minimum of the
transcendence degrees trdegk(K0) taken over all fields

k ⊆ K0 ⊆ K

such that α descends to K0.
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The essential dimension of a functor

In many instances one is interested in the “worst case scenario”,
i.e., in the number of independent parameters which may be
required to describe the “most complicated” objects of its kind.
With this in mind, we define the essential dimension ed(F) of the
functor F as the supremum of ed(α) taken over all α ∈ F(K ) and
all K . We have shown that ed(F) 6 n in Examples 1 and 2, and
ed(F) 6 2 in Example 3.

We will later see that, in fact,

ed(F) = n in Example 1 (quadratic forms).

One can also show that

ed(F) = n in Example 2 (linear transformations) and

ed(F) = 2 in Example 3 (elliptic curves).
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The essential dimension of a group

An important class of examples are the Galois cohomology functors
FG = H1(∗,G ) sending a field K/k to the set H1(K ,GK ) of
isomorphism classes of G -torsors over Spec(K ). Here G is an
algebraic group defined over k .

ed(FG) is a numerical invariant of G . Informally speaking, it is a
measure of complexity of G -torsors over fields. This number is
usually denoted by ed(G ).

The notion of essential dimension was originally introduced in this
context; the more general definition for a covariant functor is due
to A. S. Merkurjev.
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Classical examples

F. Klein, 1885: ed(S5) = 2. (“Kroneker’s theorem”?)

J.-P. Serre, A. Grothendieck, 1958: Classified “special groups”
over an algebraically closed field. Recall that k-group G is
called special if

H1(K ,GK ) = {pt}

for every field K/k . G is special if and only if ed(G ) = 0.

C. Procesi, 1967: ed(PGLn) ≤ n2.
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Techniques for proving lower bounds on ed(G )

Bounds related to cohomological invariants of G .

Bounds related to non-toral abelian subgroups of G .

Bounds related to Brauer classes induced by a central
extension

1→ C → G → G → 1 .
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Cohomological invariants

A morphism of functors F → Hd( ∗ , µn) is called a cohomological
invariant of degree d ; it is said to be nontrivial if F(K ) contains a
non-zero element of Hd(K , µn) for some K/k.

Observation (J.-P. Serre) Suppose k is algebraically closed. If there
exists a non-trivial cohomological invariant F → Hd( ∗ , µn) then
ed(F) ≥ d .

Proof:
F(K ) //
OO

Hd(K , µn)
OO

F(K0) // Hd(K0, µn) .

If trdegk(K0) < d then by the Serre Vanishing Theorem
Hd(K0, µn) = (0).
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Examples of cohomological invariants

ed(On) = n. Cohomological invariant
H1(K ,On)→ Hn(K , µ2): nth Stiefel-Whitney class of a
quadratic form.

ed(µrp) = r . Cohomological invariant
H1(K , µrp)→ H r (K , µp): cup product.

ed(Sn) ≥ [n/2]. Cohomological invariant
H1(K ,Sn)→ H [n/2](K , µ2): [n/2]th Stiefel-Whitney class of
the trace form of an étale algebra. Alternatively, (c) can be
deduced from (b).
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Examples continued

ed(PGLpr ) ≥ 2r . Cohomological invariant:

H1(K ,PGLn)
∂−→ H2(K , µpr )

pr−→ H2r (K , µpr ), where pr is the
divided rth power map.

ed(F4) ≥ 5. Cohomological invariant:
H1(K ,F4)→ H5(K , µ2), first defined by Serre.
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Non-toral abelian subgroups

Theorem: (R.-Youssin, 2000; R.-Gille, 2007) If G is connected, A
is a finite abelian subgroup of G and char(k) does not divide |A|,
then

edk(G ) ≥ rank(A)− rank C 0
G (A) .

Remarks:

May pass to the algebraic closure k .

If A lies in a torus of G then the above inequality is vacuous.

Most interesting case: C 0
G (A) is finite. This happens iff A is

not contained in any proper parabolic subgroup of G .

The shortest known proof relies on resolution of singularities.
If A is a p-group, Gabber’s theorem on alterations can be used
as a substitute.
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as a substitute.



Non-toral abelian subgroups
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Examples

ed(SOn) ≥ n − 1 for any n ≥ 3,

ed(PGLps ) ≥ 2s

ed(Spinn) ≥ [n/2] for any n ≥ 11.

ed(G2) ≥ 3

ed(F4) ≥ 5

ed(Esc
6 ) ≥ 4

ed(Esc
7 ) ≥ 7

ed(E8) ≥ 9

Minor restrictions on char(k) apply.

Each inequality is proved by exhibiting a non-toral abelian
subgroup A ⊂ G whose centralizer is finite. For example, in part
(a) we assume char(k) 6= 2 and take A ' (Z/2Z)n−1 to be the
subgroup of diagonal matrices in SOn.
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Central extensions

Theorem: (Brosnan–R.–Vistoli, Karpenko—Merkurjev)
Suppose 1→ C → G → G → 1 is a central exact sequence of
k-groups, with C 'k µp.
Assume that k is a field of characteristic 6= p containing a
primitive pth root of unity. Then

edk(G ) ≥ gcd {dim(ρ)} − dim G ,

where ρ ranges over all k-representations of G whose restriction to
C is faithful.

Karpenko and Merkurjev have extended this bound to the case
where C 'k µ

r
p for some r ≥ 1.
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Applications

Brosnan–R.–Vistoli: ed(Spinn) increases exponentially with n.

An exponential lower bound can be obtained by applying the
theorem to the central sequence

1→ µ2 → Spinn → SOn → 1 .

(Karpenko – Merkurjev): Let G be a finite p-group and k be a
field containing a primitive pth root of unity. Then

edk(G ) = min dim(φ) , (1)

where the minimum is taken over all faithful k-representations φ of
G .
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Two types of problems

Suppose we are given a functor

F : Fieldsk → Sets

and we would like to show that some (or every) α ∈ F(K ) has a
certain property.
It is often useful to approach this problem in two steps. For the
first step we choose a prime p and ask whether or not αL has the
desired property for some prime-to-p extension L/K . This is what I
call a Type 1 problem.
If the answer is “no” for some p then we are done.
If the answer is “yes” for every prime p, then the remaining
problem is to determine whether or not α itself has the desired
property. I refer to problems of this type as Type 2 problems.
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Essential dimension at p

Let F : Fieldsk → Sets be a functor and α ∈ F(K ) for some field
K/k .

The essential dimension ed(α; p) of α at a prime integer p is
defined as the minimal value of ed(αL), as L ranges over all finite
field extensions L/K such that p does not divide [L : K ].

The essential dimension ed(F ; p) is then defined as the maximal
value of ed(α; p), as K ranges over all field extensions of k and α
ranges over F(K ).
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Essential dimension at p, continued

In the case where F(K ) = H1(K ,G ) for some algebraic group G
defined over k , we will write ed(G ; p) in place of ed(F ; p).
Clearly, ed(α; p) ≤ ed(α), ed(F ; p) ≤ ed(F), and
ed(G ; p) ≤ ed(G ) for every prime p.

In the context of essential dimension:

Type 1 problem. Find ed(α; p) or ed(F ; p) or ed(G ; p) for some
(or every) prime p.

Type 2 problem. Assuming ed(α; p), ed(F ; p), or ed(G ; p) is
known for every prime p, find the “absolute” essential dimension
ed(α), ed(F), or ed(G ).
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ed(G ) versus ed(G ; p)

A closer look at the three techniques we discussed of proving lower
bounds of the form ed(G ) ≥ d reveals that in every case the
argument can be modified to show that in fact ed(G ; p) ≥ d for
some (naturally chosen) prime p. In other words, these techniques
are well suited to Type 1 problems only.

This is a special case of the following more general but admittedly
vague phenomenon.

Observation: Most existing methods in Galois cohomology and
related areas apply to Type 1 problems only. On the other hand,
many long-standing open problems are of Type 2.
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Examples of Type 2 problems

The cyclicity problem and the cross product problem for
central simple algebras

The torsion index problem (for simply connected or adjoint
groups)

The problem of computing the canonical dimension of a
simple group

Serre’s conjecture on the splitting of a torsor

The conjecture of Cassels and Swinnerton-Dyer on cubic
hypersurfaces
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Another Type 2 problem

In the context of essential dimension, while we know that for some
finite groups G ,

ed(G ) > ed(G ; p)

for every prime p, the only natural examples where we can prove
this are in low dimensions, with ed(G ) ≤ 3 or (with greater effort)
4.



Open problem 1: What is ed(Sn)?

This is a classical question, loosely related to the algebraic form of
Hilbert’s 13th problem.

In classical language, ed(Sn) is a measure of how much the general
polynomials,

f (x) = xn + a1xn−1 + · · ·+ an ,

where a1, . . . , an are independent variables, can be reduced by a
Tschirnhaus transformation. That is, ed(Sn) is the minimal
possible number of algebraically independent elements among the
coefficients b1, . . . , bn of a polynomial

g(y) = yn + b1yn−1 + · · ·+ bn

such that f (x) can be reduced to g(y) by a Tschirnhaus
transformation.
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More on ed(Sn)

The problem of computing ed(Sn) turns out to be of Type 2.
For simplicity, let us assume that char(k) = 0. Then
ed(Sn; p) = [n/p], is known for every prime p. For the “absolute”
essential dimension, we only know that

[n/2] ≤ ed(Sn) ≤ n − 3

for every n ≥ 5.
In particular, ed(S5) = 2 and ed(S6) = 3. It is also easy to see that
ed(S2) = ed(S3) = 1 and ed(S4) = 2.

Theorem (A. Duncan, 2010): ed(S7) = 4.

The proof relies on recent work in Mori theory, due to
Yu. Prokhorov.
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Open problem 2: What is ed(PGLn)?

This appears to be out of reach for now, except for a few small
values of n. On the other hand, there has been recent progress on
computing ed(PGLn; p)?
May assume that n = pr . It is easy to see that ed(PGLp; p) = 2.

Theorem: For r ≥ 2,

(r − 1)pr + 1 ≤ ed(PGLpr ; p) ≤ p2r−2 + 1 .

The lower bound is due to Merkurjev and the upper bound is due
to his student A. Ruozzi. In particular,

ed(PGLp2 ; p) = p2 + 1 and ed(PGL8; 2) = 17.

Of course, in general there is still a wide gap between (r − 1)pr + 1
and p2r−2 + 1.



Open problem 2: What is ed(PGLn)?

This appears to be out of reach for now, except for a few small
values of n. On the other hand, there has been recent progress on
computing ed(PGLn; p)?
May assume that n = pr . It is easy to see that ed(PGLp; p) = 2.

Theorem: For r ≥ 2,

(r − 1)pr + 1 ≤ ed(PGLpr ; p) ≤ p2r−2 + 1 .

The lower bound is due to Merkurjev and the upper bound is due
to his student A. Ruozzi. In particular,

ed(PGLp2 ; p) = p2 + 1 and ed(PGL8; 2) = 17.

Of course, in general there is still a wide gap between (r − 1)pr + 1
and p2r−2 + 1.



Open problem 2: What is ed(PGLn)?

This appears to be out of reach for now, except for a few small
values of n. On the other hand, there has been recent progress on
computing ed(PGLn; p)?
May assume that n = pr . It is easy to see that ed(PGLp; p) = 2.

Theorem: For r ≥ 2,

(r − 1)pr + 1 ≤ ed(PGLpr ; p) ≤ p2r−2 + 1 .

The lower bound is due to Merkurjev and the upper bound is due
to his student A. Ruozzi. In particular,

ed(PGLp2 ; p) = p2 + 1 and ed(PGL8; 2) = 17.

Of course, in general there is still a wide gap between (r − 1)pr + 1
and p2r−2 + 1.



Open problem 2: What is ed(PGLn)?

This appears to be out of reach for now, except for a few small
values of n. On the other hand, there has been recent progress on
computing ed(PGLn; p)?
May assume that n = pr . It is easy to see that ed(PGLp; p) = 2.

Theorem: For r ≥ 2,

(r − 1)pr + 1 ≤ ed(PGLpr ; p) ≤ p2r−2 + 1 .

The lower bound is due to Merkurjev and the upper bound is due
to his student A. Ruozzi. In particular,

ed(PGLp2 ; p) = p2 + 1 and ed(PGL8; 2) = 17.

Of course, in general there is still a wide gap between (r − 1)pr + 1
and p2r−2 + 1.



Open problem 2: What is ed(PGLn)?

This appears to be out of reach for now, except for a few small
values of n. On the other hand, there has been recent progress on
computing ed(PGLn; p)?
May assume that n = pr . It is easy to see that ed(PGLp; p) = 2.

Theorem: For r ≥ 2,

(r − 1)pr + 1 ≤ ed(PGLpr ; p) ≤ p2r−2 + 1 .

The lower bound is due to Merkurjev and the upper bound is due
to his student A. Ruozzi. In particular,

ed(PGLp2 ; p) = p2 + 1 and ed(PGL8; 2) = 17.

Of course, in general there is still a wide gap between (r − 1)pr + 1
and p2r−2 + 1.



Open problem 2: What is ed(PGLn)?

This appears to be out of reach for now, except for a few small
values of n. On the other hand, there has been recent progress on
computing ed(PGLn; p)?
May assume that n = pr . It is easy to see that ed(PGLp; p) = 2.

Theorem: For r ≥ 2,

(r − 1)pr + 1 ≤ ed(PGLpr ; p) ≤ p2r−2 + 1 .

The lower bound is due to Merkurjev and the upper bound is due
to his student A. Ruozzi. In particular,

ed(PGLp2 ; p) = p2 + 1 and ed(PGL8; 2) = 17.

Of course, in general there is still a wide gap between (r − 1)pr + 1
and p2r−2 + 1.



Open problem 3: New cohomological invariants?

Some of the lower bounds on ed(G ; p) ≥ d obtain by the fixed
point method can be reproduced by considering cohomological
invariants

H1(∗,G )→ Hd(∗, µp) .

In other cases, this cannot be done using any known cohomological
invariants. This suggests where one might look for new
cohomological invariants (but does not prove that they have to
exist!).

In particular, is there

(a) a cohomological invariant of PGLpr of degree 2r with
coefficients in µp?

(b) a cohomological invariant of the (split) simply connected E7 of
degree 7 with coefficients in µ2?

(c) a cohomological invariant of the (split) E8 of degree 9 with
coefficients in E8?
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