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e Freter’s model of a CSTR with wall attachment (since 1983)
S =D(S° - S) — v Hupyu(S) + dwpw(9))
U= u(pu(S) — D — ky) + Bow + dwpy(S) (1 — G(W)) — au(l — W)
W = w(py (S)GW) — B —ky) +au(l—W)5 !

with
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S: substrate concentration
w: unattached bacteria
w: wall attached bacteria

— Imajor assumptions:

o growth, lysis, attachment, detachment, washout of unattached cells
o avatlable wall space for attachment is limited
o same substrate conditions for attached and unattached bacteria

— studied in 1990s and 2000s by Smith, Ballyk, Jones, Kojouharov,... in
this and extended versions (plug flow, etc): principle of competitive
exclusion does not hold



e Extension of Freter’s model for a biofilm reactor: setup

— wastewater treatment processes: activated sludge vs. biofilm processes

— biofilm reactors are designed to provide ample surface for colonization
(retention of biomass): Trickling Filters, Membrane Aerated Biofilm
Reactors, Moving Bed Biofilm Reactors (MBBR), etc

— MBBR is an attempt to provide CSTR conditions for biofilms

— due to biomass detachment suspended bacteria cannot be avoided; typ-
ically not accounted for in design of biofilm processes

— similar hybrids: IFAS (Integrated Fixed Film Activated Sludge)

— limitation of the Freter model: in biofilm reactors wall attached
bacteria develop in thick biofilms with substrate gradients = het-

erogeneous, spatially structured populations = need to include a
biofilm model for wall attached bacteria



Extension of Freter’s model for a biofilm reactor: model

= u(py(S) — D — k) + ApEN* — au
: au

— t) + — — E)N2
A= v(A, )—I—Ap A

where A: biofilm thickness: biofilm expansion due to microbial growth

J (S, \): substrate flux into biofilm (substrate consumption by biofilm)
J(S,\) = Ad.C'(N\)
v(A,t): "expansion velocity” of biofilm (biofilm growth)

e = | Z ( - kx) aC (+)

C'(z): substrate concentration in biofilm

_pmy C
dey Kx+C

observe: v and J can be "obtained” by integrating (*) once

c” C'(0)=0, C(\) =S5




e Extension of Freter’s model for a biofilm reactor: analysis

— formally re-write model as an ODE system

§=D(s" - 5) - 1 (22 + apoj(s.)
VN7
i =u(py(S) — D — ky) + ApEXN — au

A=

vde o %1} 9
J(NS) —kxA+ — — EA
PRAGEY 1

where after integrating substrate BVP once

A
J(A,S) = ~do /. ux(C(z))dz

— ODE can be studied with elementary techniques
— NOTE: evaluating R.H.S still requires to solve BVP!!

Proposition. Initial value problem possess a unique, non-negative and
bounded solution for all ¢ > 0. We have either u(t) = A(t) = 0 or
u(t) > 0,A(¢t) > 0 for all £ > 0.



e Extension of Freter’s model for a biofilm reactor: analysis

Lemma (Properties of j(\,5)). For A > 0,5 > 0 the function j(\,95)
is well-defined and differentiable. It has the following properties:

(a) 5(-,0) =4(0,) =0
b) 2 (0, s>—o

(
(¢)y/ 7% tanh 1/ 32 < j(X, 8) < \/ wls tanh / 222
(d) with 6 := pmA/vd we have




e Extension of Freter’s model for a biofilm reactor: analysis

Proposition (stability of washout equilibrium). Washout equilib-
rium (S, 0,0) exists for all parameters. It is asymptotically stable

0j kxp
pu(S7) <D+ ky,+a an 8)\( ) < ~do
and unstable if either
2] kxp
u SO D ku —(0 SO — .

Corollary. A sufficient condition for asymptotic stability of the trivial
equilibrium is

(8°) < D+ k,+a and S—O<k—A
On the other hand,
SO k
«(S°) > D + k, ia
pu(S%) > D+ k,+a or K,\+S0>m,\

is sufficient for instability.



e Extension of Freter’s model for a biofilm reactor: analysis
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e Extension of Freter’s model for a biofilm reactor: Simulations

Steady state values of u, A in dependence of dilution rate
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e Extension of Freter’s model for a biofilm reactor: Simulations

Contribution of suspended biomass to substrate removal

portion of substrate removal performed by suspended biomass (%)

Summary: for small colonization area and flow rate, suspendeds can
contribute substantially to substrate removal



e Optimization: setup

— previous analysis is concerned with long term behaviour of the reactor
in the case of continuous inflow of substrate

— now: treat finite amount of substrate in finite time

— can the process be optimized by controlling flow rate Q7
o treat as much substrate as possible
o in as short a time as possible

— vector optimization problem
T
min fO Q5dt
QEQ T

where Q : [0, Tyhaz] — IR{ reactor flow rate,  specified later



e Vector optimization

Edgeworth-Pareto optimality: a solution is optimal is further improve-
ment of one objective is only possible at the expense of making the
other one worse

enforces a trade-off between objectives
solution is not unique, typically infinitely many optima exist
solution can be represented graphically as Pareto front

convert vector optimization problem into a family of scalar problems:

o scalarization by monotonic (linear) functionals F : R* — IR

T
glel?zf(Z(Q)):glel?zwﬁ/o QSdt+ (1 —w)T, O<w<l1

o modified Pollack algorithm: For every T € (Tin, Tmaz) Solve

T
min / QSdt
0

Qe



e Optimization: Optimal control problem in Bolza form

T
i Sdt + (1 — w)T
min wf /O QSdt + (1 — w)

with Q = {@Q measureable,0 < Q < Qazt
subject to

$=Q0_g -1 (“““(S> + ADcj(S, A))

V V vy
U= u (,LLU(S) — % — k’u) + ApEXN? — au
< yde . au 5
A= JNS) — kA + — — EX

S I S) = A+ oo
V= —Q

S(O) — 07 U(O) > U, A(O) > Oa %(O) — %,maa:

-- linear in control variable () = optimal control chatters



e Optimization: Off-on functions

— look for optimal flow rate () in the class of functions

O, fOT t < Tswz’tch

t) = Vb, maz
Q( ) T—%;switch’ for TswitCh S t S T

and solve (using Pollack’s method)

T
min fO g%Sdt ; st. 0< Tmz’n < Tswitch <7< Tmaa;
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e Optimization: Off-on functions continued

— strong dependence on initial data:
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— initial data typically not known = optimum difficult to find
— the less biomass initially in reactor the higher potential for control
— overall very moderate compared to Q) = Vj yy4:/1 = const

— for all practical purposes, no control benefits



Optimization: Other approaches that we tried

optimal Q (m®/day)
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— zero-max functions: divide [0, T},4.| into n subintervals of length At =
T'/n and search for optimal @ : ¢t — {0, Qaz}

— an industry standard software package
— a free academic software package that did not converge

— all these approaches are computationally much more expensive than
simple off-on functions

— none performs better than simple off-on functions
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e Take home

extended the Freter model for a bioreactor with wall attachment by
combining it with a Wanner-Gujer style biofilm model (single species,
single substrate) to assess contribution of suspended bacteria to sub-
strate degradation in a biofilm reactor

model can formally be written as ODE, and qualitatively studied with
elementary techniques

in biofilm reactors, at lower flow rates suspended bacteria can make a
major contribution to substrate removal

at higher flow rates suspended are washed out

qualitative behaviour of model similar than simple Freter model, quan-
titative big differences (did not have time to emphasize this)

multi-species setup will be essentially more complex: free boundary
value problem for a coupled nonlocal parabolic-hyperbolic system (did
not have time to cover this)

finite time treatment: optimization not worth the effort



