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Introduction

Ecology and dispersal

Which patterns of dispersal provide an evolutionary advantage in a
variable environment?

Unbiased dispersal - independent of habitat, population density, etc.

Biased dispersal - depends on one or more factors
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Introduction

Generalized two species model

(Cantrell et al. 2010)

ut = µ∇ · [∇u − u∇P(x)] + u[m(x)− u − v ] in Ω× (0,∞),

vt = ν∇ · [∇v − v∇Q(x)] + v [m(x)− u − v ] in Ω× (0,∞), (1)

[∇u − u∇P] · n = [∇v − v∇Q] · n = 0 on ∂Ω× (0,∞)

Species have same population dynamics but different movement
strategies

m(x) > 0 is nonconstant (spatially inhomogeneous)

Semi-trivial steady states: (u∗, 0) and (0, v∗)

Is there a strategy P(x) which cannot be invaded?
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Ideal Free Distribution

Single species distribution

Diffusion creates a mismatch between population density at steady
state and habitat quality m(x) (Cantrell et al. 2010)

µ∇ · [∇u − u∇P(x)] + u[m(x)− u] = 0 in Ω,

[∇u − u∇P(x)] · n = 0 on ∂Ω.

If P(x) = lnm(x), u ≡ m is a positive steady state.

No net movement:

∇u − u∇P(x) = ∇m −m∇ lnm = ∇m −∇m = 0

Fitness equilibrated throughout the habitat: m
u ≡ 1.

We call P = lnm an Ideal Free Strategy (IFS).
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Ideal Free Distribution

Habitat Selection Theory (Fretwell and Lucas 1970):

1 Choose most suitable habitat (ideal)

2 Can move into any desired region (free)

Ideal Free Distribution: A species will aggregate in a location
proportionately to the amount of available resources in that location
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Ideal Free Distribution

Evolutionary stable strategy

Cantrell et al. showed that P = lnm is a local evolutionary stable
strategy (ESS) and no other strategy can be a local ESS.

Theorem

(Averill et al.) Suppose that P = lnm and Q − lnm is nonconstant. Then
(0, v∗) is unstable and (u∗, 0) is globally asymptotically stable.

Biologically, P = lnm is a global ESS.

Main Question: Does this result still hold when u(m − u − v) is
replaced by u2(m − u − v) in model (1)?
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Adding Allee effects

Modified model (Munther, JDE 2013)

ut = µ∇ · [∇u − u∇ ln(m)] + u2(m − u − v) in Ω× (0,∞),

vt = ν∇ · [∇v − βv∇ ln(m)] + v(m − u − v) in Ω× (0,∞), (2)

[∇u − u∇ ln(m)] · n = [∇v − βv∇ ln(m)] · n = 0 on ∂Ω× (0,∞).

Why is this interesting?

u is subject to weak Allee effect (species no longer have the same
population dynamics)

Interplay between IFS and weak Allee effect

Invasion dynamics not useful for any β ∈ [0,∞)
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Adding Allee effects

β = 0 case

Theorem (1)

Suppose m ∈ C 2(Ω̄) is positive and non-constant. Then for β = 0 and any
µ, ν > 0, any solution (u, v) of (2) with nonnegative, not identically zero
initial data converges to (m, 0) in L∞(Ω) as t →∞.

u cannot only invade v , but it drives v to extinction no matter its
diffusion rate

IFS offsets the weak Allee effect
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Adding Allee effects

Proof of Theorem (1)

Recast model as dynamical system S [u, v ] on C (Ω̄)× C (Ω̄).

The order interval G = [(0, v∗), (m, 0)] is a basin of attraction.

Define E (u, v) =
∫

Ω
m2

u + 2m ln u − u + v2

2 .

dE
dt = −µ

∫
Ω

2m|∇(u/m)|2(1−(u/m))
(u/m)3 − ν

∫
Ω |∇v |

2

−
∫

Ω((m − u)2 − v2)(m − u − v) ≤ 0 on G .

By LaSalle’s invariance principal for infinite dimensions,
S [u, v ]→ (m, 0).
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Adding Allee effects

β � 1 case

Theorem (2)

Suppose m ∈ C 2(Ω̄) is positive and non-constant. Then there exists
0 < β∗ < 1 such that for all β ∈ (0, β∗) and any µ, ν > 0, any solution
(u, v) of (2) with nonnegative, not identically zero initial data converges
to (m, 0) in L∞(Ω) as t →∞.

Again, u is sole winner as IFS is able to still offset the Allee effect.

Proof for Theorem (2) is more tricky.
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Adding Allee effects

Remarks

Conjecture: Theorem (2) holds for all β ∈ (0, 1).

First, (0, v∗) is unstable for β ∈ (0, 1), since
∫

Ω m2(m − v∗) > 0.

Second, numerics indicate no positive steady states.

For the β = 1 case, both species are playing IFS and hence coexist.
System (2) has a continuum of positive steady states of the form
(sm, (1− s)m) for s ∈ (0, 1).

For the β >> 1 case, we can show (0, v∗) is unstable.

Conjecture: u (IFS) should be the sole winner as in Theorem (2).

For m with single max in Ω, we can prove this (Adrian Lam).
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Adding Allee effects

Intermediate β ∈ (1, 1 + ε) case

Current work (with Adrian Lam):

We can show that
∫

Ω m2(m − v∗) < 0.

Using upper/lower solution argument, eliminate positive steady states
near (0, v∗).

By monotonicity, we can show that (0, v∗) is locally asymptotically
stable.

Fundamentally different:

The winning strategy is no longer a “resource matching” strategy.

Biological explanation?
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Adding Allee effects

Intermediate β > 1 case

Numerical example:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

T=1.5

Distance x

D
en

si
ty

 

 

u

v

m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

T=10
5

Distance x

D
en

si
ty

 

 

u

v

m

Figure: m(x) = 3e−50(x−.2)2

+ 1.7e−40(x−.8)2

+ .2 (black) and u (red) and v
(blue), µ = 1000, ν = 1000, β = 1.7 a) two species at T = 1.5, b) T = 105.

The growth rate for u near x = 0.8 is m(x)− v(x , t) > 0 for all t > T0.

For β in this range, v can defeat u even when u has significant initial
numbers.
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Conclusions

Summary:

For β ∈ [0, 1) and [β∗,∞), the ideal free disperser dominates.

For β = 1, coexistence as both species are ideal free dispersers

For intermediate β > 1, the ideal free strategy cannot invade.

Future work:

Prove global stability of (0, v∗) for β ∈ (1, 1 + ε).

u subject to a strong Allee effect
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Conclusions
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