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Ecology and dispersal

Which patterns of dispersal provide an evolutionary advantage in a
variable environment?

@ Unbiased dispersal - independent of habitat, population density, etc.
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@ Biased dispersal - depends on one or more factors
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Generalized two species model

(Cantrell et al. 2010)

ur = pV - [Vu— uVP(x)] + u[m(x) —u—v] inQx(0,00),
vi = vV - [Vv = vVQ(X)] + v[m(x) —u—v] inQx(0,00), (1)
[Vu—uVP]-n=[Vv—-vVQ] -n=0o0n 92 x (0,00)

@ Species have same population dynamics but different movement
strategies

e m(x) > 0 is nonconstant (spatially inhomogeneous)

e Semi-trivial steady states: (u*,0) and (0, v*)

@ Is there a strategy P(x) which cannot be invaded?
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Single species distribution

@ Diffusion creates a mismatch between population density at steady
state and habitat quality m(x) (Cantrell et al. 2010)

uV - [Vu—uVP(x)] 4+ ulm(x) —u] =0 in Q,
[Vu—uVP(x)]-n=0 on 0Q.

e If P(x) =Inm(x), u= mis a positive steady state.

@ No net movement:
Vu—uVP(x)=Vm—mVIinm=Vm—-Vm=20
o Fitness equilibrated throughout the habitat: 7! = 1.

@ We call P =Inm an Ideal Free Strategy (IFS).
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Ideal Free Distribution

Habitat Selection Theory (Fretwell and Lucas 1970):

© Choose most suitable habitat (ideal)
@ Can move into any desired region (free)

Ideal Free Distribution: A species will aggregate in a location
proportionately to the amount of available resources in that location
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Ideal Free Distribution

Evolutionary stable strategy

@ Cantrell et al. showed that P = In m is a local evolutionary stable
strategy (ESS) and no other strategy can be a local ESS.

Theorem

(Averill et al.) Suppose that P =Inm and Q — In m is nonconstant. Then
(0, v*) is unstable and (u*,0) is globally asymptotically stable.

@ Biologically, P = Inm is a global ESS.

e Main Question: Does this result still hold when u(m — u —v) is
replaced by u?(m — u — v) in model (1)?
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Modified model  (Munther, JDE 2013)

uy = pV - [Vu — uVin(m)] + v?*(m — u — v) in Q x (0,00),
ve = vV - [Vv = BvViIn(m)] + v(m—u—v) in Qx(0,00), (2)
[Vu—uVin(m)]-n=[Vv—=8vVIn(m)]-n=0 on 092 x(0,00).

Why is this interesting?

@ u is subject to weak Allee effect (species no longer have the same
population dynamics)

@ Interplay between IFS and weak Allee effect

@ Invasion dynamics not useful for any /3 € [0, c0)
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Adding Allee effects

B =0 case

Theorem (1)

Suppose m € Cz(Q) is positive and non-constant. Then for 8 = 0 and any

w, v >0, any solution (u, v) of (2) with nonnegative, not identically zero
initial data converges to (m,0) in L*°(Q2) as t — oc.

@ u cannot only invade v, but it drives v to extinction no matter its
diffusion rate

@ IFS offsets the weak Allee effect
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Proof of Theorem (1)

@ Recast model as dynamical system S[u, v] on C(Q2) x C(2).

@ The order interval G = [(0, v*), (m,0)] is a basin of attraction.

e Define E(u,v) = Qm72+2m|nu—u+v72.

m lJrTl2 —\u/m
o %:_Nfgz [v( /(u}\m()l3 (u/m)) —VfQ|VV‘2

— Jo((m— u)2 —v?)(m—u—v)<0onG.

o By LaSalle's invariance principal for infinite dimensions,
S[u, v] — (m,0).
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Adding Allee effects

B < 1 case

Theorem (2)

Suppose m e C 2(S_Z) is positive and non-constant. Then there exists
0 < * < 1 such that for all 5 € (0, 5*) and any u, v > 0, any solution

(u, v) of (2) with nonnegative, not identically zero initial data converges
to (m,0) in L°(Q) as t — oo.

@ Again, u is sole winner as IFS is able to still offset the Allee effect.

@ Proof for Theorem (2) is more tricky.
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Remarks

e Conjecture: Theorem (2) holds for all g € (0,1).
First, (0, v*) is unstable for 8 € (0,1), since [o m*(m — v*) > 0.

Second, numerics indicate no positive steady states.

@ For the 8 =1 case, both species are playing IFS and hence coexist.
System (2) has a continuum of positive steady states of the form
(sm, (1 —s)m) for s € (0,1).

@ For the  >> 1 case, we can show (0, v*) is unstable.
Conjecture: u (IFS) should be the sole winner as in Theorem (2).

For m with single max in €, we can prove this (Adrian Lam).
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Intermediate 5 € (1,1 + ¢€) case

Current work (with Adrian Lam):

e We can show that [, m*(m — v*) < 0.

@ Using upper/lower solution argument, eliminate positive steady states
near (0, v*).

e By monotonicity, we can show that (0, v*) is locally asymptotically
stable.

Fundamentally different:
@ The winning strategy is no longer a “resource matching” strategy.

@ Biological explanation?
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Adding Allee effects

Intermediate S > 1 case

Numerical example:

T=1.5

T=10°

Density
Density

. . M —— . . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 |1 0 0l 02 03 04 05 06 07 08 09 1
Distance x Distance x

Figure: m(x) = 3e500=2)° 1 7¢40—8) 1 2 (black) and u (red) and v
(blue), 1 = 1000, v = 1000, 8 = 1.7 a) two species at T = 1.5, b) T = 10°,

@ The growth rate for u near x = 0.8 is m(x) — v(x, t) > 0 for all t > T.

@ For (3 in this range, v can defeat u even when u has significant initial
numbers.
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Conclusions

Summary:
e For § €0,1) and [B*, 00), the ideal free disperser dominates.

@ For 8 =1, coexistence as both species are ideal free dispersers
@ For intermediate 5 > 1, the ideal free strategy cannot invade.

Future work:

@ Prove global stability of (0,v*) for 8 € (1,1 +¢).

@ u subject to a strong Allee effect
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