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The dynamical system concept is a mathematical formalization for
’ any fixed "rule" which describes the time dependence of a point's
position in its ambient space.
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Formal answer: a math definition

A dynamical system is a tuple (1", M, ®)

[ monoid (time)
M : set (state space) O:T'xM—>M

@ : map (evolution function)

satisfying the two following properties
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In case the state space M is a function space, we
have an infinite dimensional dynamical system !




Examples

. Finite dimensional discrete dynamical systems

0|  TheTentMap 1

T = N (discrete time)
M = |0, 1] (state space)

O:T'x M —> M

(n,a;) — (I)(T%Qj) — fn(x) 00--’ f




Examples

2. Finite dimensional continuous dynamical systems:

(dr
o[ 5210y

\

D (t, x() :solution of the (IVP)

T' = R (continuous time)
M = R™ (state space)

O:T xM—M
(t,%o) > (I)(t,ﬁo)

Lorenz equations




Examples
3. Infinite dimensional continuous dynamical systems

(a) Partial differential equations

Cahn-Hilliard equation

A(—VAu—u—l—u3) —(

ou
ot

QCR*n=1,2,3

T = [0, 00) (continuous time)
M = L*(Q) (infinite dimensional state space)

O:T'xM—M
(t, ug) — P(t,ug) (semigroup)




Examples

3. Infinite dimensional continuous dynamical systems

(b) Delay differential equations y’(t) — f'(y(t)7 y(t — 7'))

T = [0, 00) (continuous time)
M = C|—, 0] (infinite dimensional state space)

O:T'xM-—>M
(t,y0) — P(t,y0) (semigroup)




Examples

3. Infinite dimensional continuous dynamical systems

(b) Delay differential equations y’(t) — f(y(t), y(t — 7'))

T = [0, 00) (continuous time)
M = C|—, 0] (infinite dimensional state space)

d T x M — M
(t,y0) — D(¢, yo) (semlgroup)

.
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* Equilibrium solutions.
* Time periodic solutions.
e Connecting orbits.
* Global attractors.
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In practice, how to study a dynamical system?

A standard approach is to get insight from numerical simulations to formulate new
conjectures, and then attempt to prove the conjectures using pure mathematical
techniques only. Actually, this strong dichotomy need not exist in the context of
dynamical systems, as the strength of numerical analysis and functional analysis can
be combined to prove, in a rigorous mathematical sense, the existence of
equilibria, periodic solutions, connecting orbits.... and even chaotic dynamics !




In practice, how to study a dynamical system?

A standard approach is to get insight from numerical simulations to formulate new
conjectures, and then attempt to prove the conjectures using pure mathematical
techniques only. Actually, this strong dichotomy need not exist in the context of
dynamical systems, as the strength of numerical analysis and functional analysis can
be combined to prove, in a rigorous mathematical sense, the existence of
equilibria, periodic solutions, connecting orbits.... and even chaotic dynamics !

Rigorous computations

The goal of rigorous computations is to construct algorithms that
provide an approximate solution to the problem together with
precise and possibly efficient bounds within which the exact solution
is guaranteed to exist in the mathematically rigorous sense.
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Often impossible to compute exactly !




O

Alternative: find small balls in which it is demonstrated (in a
mathematically rigorous sense) that a unique solution exists.




Rigorous Computations
(Ingredients)

. Smoothness of the solutions
. Banach space of algebraically decaying sequences

. Finite dimensional Galerkin projection

. Bounds on the truncation error terms (Analytic estimates)

. Fixed point theory, Uniform contraction principle
. Numerical analysis (continuation, Fast Fourier transform)

. Interval Arithmetic




Rigorous Computations
(Ingredients)

. Smoothness of the solutions

. Banach space of algebraically decaying sequences

. Finite dimensional Galerkin projection

. Bounds on the truncation error terms (Analytic estimates)
. Fixed point theory, Uniform contraction principle

. Numerical analysis (continuation, Fast Fourier transform)

. . A T, V1
. Interval Arithmetic Predictor "

Corrector

Continuation

T
(Predictor-Corrector Algorithm) | ‘ ‘ ’




Rigorous Computations

F(u,v) =0

(Differential Equation)

spectral method

~> [

(x,v) =0
L : modes
1/ : parameter
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Rigorous Computations

F(u,v) =0

(Differential Equation)

about regularity

spectral method
~~ [ (x  V ) =0

2 : modes
1/ : parameter

Knowedge v € 0 = { (an)u o]l = sup{of] k) < oo

Consider I such that f(™)(z, 1) ~ 0. |Galerkin approximation

f(:l:‘, V) = 0 < Ty( ) — = |Newton-like operator|at I

T, : Q% — QF
T,/(CU) Z.CIZ‘—Jf(ZIJ,V)
J ~ Dy f(Z,10) "

\

The chances of contracting a small
> set B around I depends on the
magnitude of the eigenvalues of .J.
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A: |Radii polynomials| {px(7)}% :upper bounds satisfying
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Q: How to find a ball Bz () such that
T,: Bz(r) — Bz(r) is a contraction?
Bz(r) = z +{B(r) Ball of radius r

centered at 0
in the space {)°

A: |Radii polynomials| {px(7)}% :upper bounds satisfying

“Tu(a_@) — f}k‘ + sup |[D,T, (7 + b)c}k‘ — LS < pp(r)
b,ce B(r) Wy

Lemma: If there exists r > Osuch that px(r) < 0 for all &,
then there is a unique & € Bz(r)s.t. f(Z,v) =0,

proof. Banach fixed point theorem.




Analytic estimates to construct the polynomials

Suppose there exist Ay, As, ..., A, such that for every j € {1,...,n} and every
k € Z¢, we have that

(j)’ A
‘C’c = W’ [w;:|k1|81...|kd|sdj

Then, for any k € Z¢, we get that

|(c(1)*---*c(n)) ‘g
k

> ) <

M. Gameiro & J.-P. L. Analytic estimates and rigorous continuation for equilibria of
higher-dimensional PDEs. Journal of Differential Equations, 2010.




Verifying the uniform
contraction principle.

Radii polynomials {pk(T, Ay)} N>

Jr>0 s.t. pe(r,A,)) <0,Yk = T :uniform contraction on [vp, vy + A,]

The rigorous computational method

T, =T+ AT




Gluing the
smooth pieces




Gluing the
smooth pieces

(@) | f(@,0) =0, v e [vo, 1]}




Gluing the
smooth pieces

(@) | f(@,0) =0, v € [vo, v}




Gluing the
smooth pieces

e Global smooth curves of solutions.
¢ Local uniqueness by the Banach fixed point theorem.
* Proof of non existence of secondary bifurcations along the curves.




Applications

¢ Initial value problems of ODEs (Chebyshev in time)
e Boundary value problems of ODEs (Chebyshev in time)
e Periodic solutions of ODEs (Fourier in time)

e Connecting orbits of ODEs (Chebyshev in time + parameterization

of invariant manifolds using power series)
e Equilibria of PDEs (Fourier in space)
¢ Periodic solutions of delay differential equations (Fourier in time)
e Minimizers of action functionals (Chebyshev in time)
¢ Periodic solutions of PDEs (Fourier in space and in time)
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1. Homoclinic and heteroclinic orbits
of ODEs (traveling waves)

— vt 4T

homoclinic orbit heteroclinic orbit
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Connecting Orbits

Compute a set of equilibria.
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Rigorous Computations
Connecting Orbits

Compute a set of equilibria.

Local representation of the

invariant manifolds.
Parameterization method

Connecting orbits between
the equilibria?
Boundary value problem

Chebyshev series
Radii polynomials




2. Equilibria of PDEs

Cahn-Hilliard 3D

‘ | 3
uy = —A(GAu+u—u’), in B ™ T
du  OAu =10, 710, 7501) % 0 1502

L On ~ On

]

= 0,




Systems of reaction-diffusion PDEs

( 1
Ow = dAz + (r — (2 +y) = biz)e + -

{ Oz = dAz + (rg — ba(x + y) — agz)z.




Systems of reaction-diffusion PDEs

1

Ow = dAz + (r — (2 +y) = biz)e + -

{ Oz = dAz + (rg — ba(x + y) — agz)z.

11 co-existing steady
states at d = 0.006




3. Periodic solutions of delay equations

F(y(t)ay(t _ 7-1)7 e 7y(t N Td)) 9




UV

I I I
0.05 0.1 0.15 0.2 0.25

y'(t) = — [2.425y(t — 1) + 2.425y(t — 72) + vy(t — 73)] [1 + y(t)],




4. Minimizers of action functionals

Ginzburg-Landau energy: a model of superconductivity

d /
G(9,a) = ;d/ (¢°(¢” —2) + ((b) +2¢°a® + 2(a’ — he)?)dt.

@ > 0 : measures the density of superconducting electrons
a : magnetic field potential
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a : magnetic field potential

Parameters
d : size of the superconducting material
h. : external magnetic field
K : Ginzburg-Landau parameter.




4. Minimizers of action functionals

Ginzburg-Landau energy: a model of superconductivity

2d

@ > 0 : measures the density of superconducting electrons
a : magnetic field potential

d /
G(g,a) = 1/ (¢*(¢° —2) + ((b) +2¢°a* + 2(a’ — h.)?)dt.

k=03 d=4

* Bifurcation
Asym
Parameters Sym

. . . —\
d : size of the superconducting material

h. : external magnetic field
K : Ginzburg-Landau parameter.

¢(d) 0.6

0.4

Co-existence of

nontrivial solutions °?




5. Periodic orbits of PDEs

Kuramoto-Sivashinski equation

(

Ut = —Vlyyyy — Uyy + 2UUy,
u(t,y) = u(t,y +2m), u(t,—y) = —u(t,y)

\
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5. Periodic orbits of PDEs

Kuramoto-Sivashinski equation

Ut = —Vlyyyy — Uyy + 2UUy,
u(t,y) = u(t,y +2m), u(t,—y) = —u(t,y)

Popular model to analyze weak turbulence

or spatiotemporal chaos

A common approach to study time-periodic solutions of (KS) is to
construct a Poincaré map via numerical integration of the flow, and to
look for fixed points of this map on a prescribed Poincare section.

Christiansen, Cvitanovic, Lan, Johnson, Jolly, Kevrekidis, Putkaradze, ...

Goal: propose an method (based on spectral methods and fixed point
theory) to rigorously compute time periodic solutions of PDEs.




Letting L = 2?”, the time-periodic solutions of period p of (KS) can be expanded
using the Fourier expansion
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def . .
hi = prce — 2 g zk%ckl Cr2 = MrCrk — kot g cpicpz = 0,
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where (g = Uk, ks £ 1k L + Vk% — k%
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k = (0,0)
k= (0,ks), ko0
k

br )’ :(k17k2)7 kl?éo and kQ#O

Defining
Z=4(0,0)}U{k=(0,ks) | ko 0} U{k = (k1,ko) | k1 # 0 and ko # 0},

one can identify x = {xg }xez.




Defining

Z={(0,0)} U{k =(0,k2) | k2 # 0} U{k = (k1,k2) | k1 # 0 and ko # 0},

one can identify x = {xg }xez.

Finally, let us define F = {F }xcz component-wise by

Fr = 1

y

(

T,
9k,
[
gk

k= (0,0)
k = (07k2)7 kQ # 0

), I{::(kl,kg), kl#o and kg#o
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one can identify x = {xg }xez.

Finally, let us define F = {F }xcz component-wise by
( n, k= (0,0)
9k, k = (07 k2)7 kQ # 0

Fre = « ;
(g: ) k= (ki k), k1 #0 and ky #0.
\

Lemma. Finding time-periodic solutions u(t,y) of (KS) such that n =0
is equivalent to find = such that F(x) = 0.




Defining
I = {(0,0)}U{kﬁz (O,kg) | ]432 #O}U{kz (kl,k'g) | k‘l #O and kQ #O},

one can identify x = {xg }xez.

Finally, let us define F = {F }xcz component-wise by

( k= (0,0)
k = (07k2)7 kQ # 0

Fr =< Tk
(o

I ) k= (ki,ko), ki1 #0 and ky # 0.

Lemma. Finding time-periodic_setattons u(t, y) of (KS) such that n =0
is equivalent to find x such @

To solve rigorously
in a Banach space




The Banach space

Define the one-dimensional weights w; by

g def 1, lfk:O
w —
g k|5, if k #£ 0.

Using the 1-d weights, define the 2-dimensional weights, given k = (k1, ko) € Z?,

def

s <& S1 S2
wk — wklka.

They are used to define the norm

lzlls = sup wg|2k|oc,
kcl

where |Tk |~ is the sup norm of the vector xg, which is one or two dimensional, depending
on k. Define the Banach space

X ={z | [Jz]ls < oo},

consisting of sequences with algebraically decaying tails according to the rate s.




The Banach space

Define the one-dimensional weights w; by

S def 17 ifk:o
w —
g k|5, if k #£ 0.

Using the 1-d weights, define the 2-dimensional weights, given k = (k1, ko) € Z?,

def

s 2 S1 S2
wk — wklka.

They are used to define the norm

lzlls = sup wg|2k|oc,
kcl

where |Tg|o is the sup norm of the vector xg, which is one or two dimensional, depending

on k. Define the Banach space Banach algebra

s / under discrete
X° = {CC | HﬂUHs < OO}: convolution

consisting of sequences with algebraically decaying tails according to the rate s.




For sake of simplicity of the presentation, for k = (k1, ko) with k1 # 0 or ky #£ 0, let

e vks — k2 —kq L

2ak1 bk2
— A1 A2 -+ bkl bk:2

Fr(z,v) = Re(v, L)xg + koNg(x).

) and Ror, (v, L) = vk; — k3,

kl+k2=k

so that one has that
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For sake of simplicity of the presentation, for k = (k1, ko) with k1 # 0 or ky #£ 0, let

o vks — k2 —kq L

QCLkl bkz
— A1 A2 -+ bkl ka

Fr(z,v) = Rp(v, L)xg + koNg(x).

) and Ror, (v, L) = vky — k3,

kl+k2=k

so that one has that

Lemma. (Bootstrap) Consider a fixed decay rate s > (1,1) and assume the existence of
M > (0,0) such that Rg(v, L) is invertible for all |k| > M. If there exists x € X*® such
that F(x) = 0, then x € X%, for all sg > (1,1).




For sake of simplicity of the presentation, for k = (k1, ko) with k1 # 0 or ky #£ 0, let

e vks — k2 —k1L

2ak1 bk2
— A1 A2 -+ bkl bk2

Fr(z,v) = Rp(v, L)xg + koNg(x).

) and Ror, (v, L) = vk; — k3,

kl+k2=k

so that one has that

Lemma. (Bootstrap) Consider a fixed decay rate s > (1,1) and assume the existence of
M > (0,0) such that Rg(v, L) is invertible for all |k| > M. If there exists x € X*® such
that F(x) = 0, then x € X%, for all sg > (1,1).

Hence, we focus our attention on looking for zeros of F
within a Banach space with a fixed decay rate s>(l,l).
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Consider a Galerkin projection of F of dimension n = n(m) < O9myme — 2my — Mo + 2
given by F(m) = {f,im)}ke F,., Where F (m). R™ — R™, is given component-wise by

'inm)(fUFm) = Fu(zp, .01 ), ke F,.

def

Consider &g such that F™) (2 ) ~ 0. Let £ = (Zr.,0r.) € X*. Assume that the
Jacobian matrix DF(™) (& ) is non-singular and let A,, an approximation for its inverse.

Define the action of the linear operator A on x = {xg}rcz component-wise by

[A(x)] " [Am(:cAFm)L, if k € F,
k Ri(v, L) ‘zy, ifk & Fp,.

T(x) = r— AF(z). | (Newton-like operator)

Lemma. Consider a Galerkin projection dimension m = (mq,ms) and let s = (s1,82) >
(1,1) a decay rate. The solutions of F = 0 are in one to one correspondence with the fixed
points of T'. Also, one has that T : X® — X3,
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The rigorous continuation method is based on the notion of the radii polynomials, which
provide a numerically efficient way to verify that the operator 1" is a contraction on a small
closed ball B(Z,r) centered at the numerical approximation & in X?.

Ingredients to construct the radii polynomials

e Convolution estimates
¢ Interval arithmetic
e Fast Fourier transform

The closed ball of radius r in X®, centered at the origin, is given by

] d(k)

where d(k) =1 if k = (0, k2) and d(k) = 2 otherwise. The closed ball of radius r centered
at = is then

B(z,7) < &4 B(r).




Consider now bounds Yy and Zj, for all k € Z, such that

[T(@) - ], < Y.

sup DT (& + xl)xg}k‘ < Zk(r).
x1,x2€B(r)

Lemma. If there exists an 7 > 0 such that |V + Z||s < 7, with ¥ = {Yi}rer and

7 = {Zp ker, then T is a contraction mapping on B(Z,r) with contraction constant at

most ||Y + Z||s/r < 1. Furthermore, there is a unique = € B(Z,r) such that F(z) = 0.
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Consider now bounds Yy and Zj, for all k € Z, such that

[T(@) - ], < Y.

sup DT (& + a:l)xg}k‘ < Zk(r).
x1,x2€B(r)

Lemma. If there exists an 7 > 0 such that |V + Z||s < 7, with ¥ = {Yi}rer and

7 = {Zp ker, then T is a contraction mapping on B(Z,r) with contraction constant at

most ||Y + Z||s/r < 1. Furthermore, there is a unique = € B(Z,r) such that F(z) = 0.

Define the finite radii polynomials {pk(r)}kcr,, DY

e T
pe(r) = Y+ Zp(r) — —19%),
Wik

and the tail radit polynomial by asymptotic bound

for Z,in X°

Lemma. If there exists » > 0 such that pg(r) < 0 for all k € Fps and ppas(r) < 0, then
there is a unique * € B(Z,r) such that F(z) = 0.
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d(k)

3% 1074 3x10°4
T

teB(r) =2+ ]]
kel
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