Four-dimensional Sil’nikov-type
dynamics in
x'(t) = —a-x(t — d(x;))
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Result of H.-O. Walther:
Existence of solution homoclinic to 0 for

' (t) = —a - z(t — d(xy)),

if the delay function d is chosen appropriately.
Spectrum at zero: (d =1, = 57/2) ps > |p1|, 0 > p1 > p.
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Aim of joint work: Show existence of symbolic dynamics for a return

map of the above equation.
(Famous precursor: Result of Sil'nikov in R* (1967).)
We describe the essential framework without reference to an equation:

1) (X, || ||) Banach space, decomposition X = 8§ X C x C
2) CY—semigroup T : R — L.(X, X),

T(t)(xs, 21, 20) = (Ts(t)xy, eP1T)z, lortiva)t s )
where [|Ts(t)|| < Ke for some K > 0, and
p<p1<0<py p2>|p1l.
3) Consider the sets
Srirs = { (@8, 21,) € X | [fasl| < 11/K, |z1] = 71,0 < | 5] < 12},
S = {(azs,zl,zQ) € X | |lzsl| < r1/K, || < 11, | 22| = 7«2}.

For © = (zg, 21, 22) € S, ., there exists a unique time 7(x) > 0 such that
T(r(x))x € ¥y 1y, namely



The local map.
Py:Sriry = Zpiryy Po(x) :=T(1(x)).

Explicitly: For z = CES? “1 ZQ) = Srl,rgv 2 = T2€i92; 21 = T1€i917
ro \P1/P2 |
Py(z) = (ys,m (ﬁ) : el(w”(:ﬁ)wl))? roet (W (2)+02) )
22 S ~ /

~~
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where ||ys|| < ||zs|[Ker™™®) < rierm@),

Note: |w;| ~ |z2|7P1/P2, 0 < exponent < 1.
(Thus, 1 >> |wy| >> |2].)
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The global map. Assume there exists 65,05 € [0,27) and a C! map
Py, with values in S, , and defined on the set

5 = {1 = (s, w0 = rac™) € 5,y | macllys] | . 162 — 051} < 2
such that with y* := (0,0, TQGZHS) € Xy and ¥ = (2%, e 0) € Sy

one has
Pi(y*) = a*.
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Domain of F;i:




The composition.
Set Iy = [05 — 09,05 + o). If ™ > 9" > 0 are large enough and §; €
(0,7/2), the set

Dﬁ*,ﬁ** = {(935, 21 = T1€i91, 2y = 7“2€i92) < STLT? ’
|(91 — eik‘ < 517
— 19** < 92 S _19*7

2] € 1y - exp[— L2 (T, — 0,)]}
W2

satisfies Py(Dygy ) C X7

r1rp0 and hence one can define the composition

A typical domain Dy, g :




Explicit formulas. ]
Describe Pj in the form y = (yg, 71 + iy1, 12€"2) +— (Zg, 711, ), with

C'! functions Zg, 61, 2o, and partial derivatives a% .29, ai 01, ete.
21y Yy

For © = (zg,7m1€"", 29) € Dy,, set
7 := 7(x) (as above) ,r] ;= 7"1(7“2/]22])[’1/”,
x1 =1y cos(wiT + 61), y1 = 7 sin(wiT + 0;),

ys = T(7)zs, ||ys|] < rief™ ~ |z|P/*!

Then P(CB) = (O,Tl exp{i[ﬁf—i— < Vgél y*, (3317917 0y — 9;) >+ Eﬂ},

< Vggg‘y*, (ﬂfl,yl,@z — (9;) >+ Eg) + B3 + By,

where El, EQ = 0(7“/1 —’-7“2(0)27' —|—¢92 — 9;)), E3 = O(HySH), E4 = (i’g, 0, O),
and ||zg|| = O(r] + da12).

(Briefly: Taylor expansion of first order w.r.t. 3d-Variables, but only to
zero order w.r. to S.)



0 ii) X'—san(8 4 8)
06, dxy oy ly T P 90, Dy’ yy’ |2+

then TSy = S B Ys, TpeSpry =S D Xy

with a corresponding projection prs to Xs.

Set Y3 := span(——

Transversality conditions:
1) pryo DPl( *) is invertible on Ys;

2) (o = 8(92‘ . # 0, or equivalently: DP(y* 822|y* o ]Ra%l‘x*.

(Geometric meaning:
The image of Dy, under P is not coaxial with Dy, g«.)

Consequences:
a) With Uy := prs D Py (y*) span(%, %)‘y*’ one has X3 =U®R- (.

b) Let H C X3 be a plane containing ¢, and such that - Q H: then

DIy, 4 18 an isomorphism on H.

(particularly convenient choice possible).



Choice of Ny, V;.
With suitably chosen numbers 9¥, 9%, 9!, 91! and £; > 0, the sets

Ny := Dyo goo, N1 := Dy yinhave the properties below:
a) (their images lie on different sides of the plane x* + H).
b) For fixed 6; and j € {1,2}, the map
N; > (0, rleigl, 29) > DIy, 4, PTx, P((0, Tleiél, 29))

is homeomorphic. (Easier to see for pry; then use that pr is isomorphic

on H.)
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Main Theorem. V(...s 35 1505182...) € {0,1}* 3 trajectory (z;);ez
of P with z; € Ny, for all j € Z.

Proof (ideas):

1) For a finite, periodic symbol sequence o = (sg, S1,..., S = Sg) €
{0,131 and a map f defined on Ny U Ny, define

Nop = Ngg N FHNg) N0 fRING,).

Lemma (Zgliczyniski). If f, g are homotopic maps and the invariant set
is disjoint to Ny U ON; throughout the homotopy, then

ind(fk, Noy) = ind(gk, Nog).

2) Three homotopies as in the lemma:

a) P ~ Py :=pry, o P; (eliminate S—component from image of P)
b) Py ~ Pj; (eliminate 6;—dependence)

¢) Py~ Py = DTy g © Ps (project values to s, yo-space).

3) With the Lemma and the reduction property of fixed point index:

ind(P*, N,) = ind(Py, N,) = ind(P¥, N, N (3, 12) — space).



4) (NoU Nyp) N (x9, yo) — space consists of two sets homeomorphic to a ball
in R?, mapped by P, homeomorphically to a larger ball containing both.

5) Lemma. For a map f as in the situation of 4), ind(f*, N,) = £1.

6) Corollary. There is a periodic orbit of P obeying «.

7) The main theorem now follows with a standard compactness argument,
using that P is compact and that periodic symbol sequences are dense in
the space of all symbol sequences (with the product topology).

Thank you

for your attention!
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