Four-dimensional Šil'nikov-type dynamics in

$$x'(t) = -\alpha \cdot x(t - d(x_t))$$

(Joint work with Hans-Otto Walther; in progress)

Bernhard Lani-Wayda Southern Ontario Dynamics Day, Toronto 2013 Result of H.-O. Walther:

Existence of solution homoclinic to 0 for

$$x'(t) = -\alpha \cdot x(t - d(x_t)),$$

if the delay function d is chosen appropriately.

Spectrum at zero: $(d = 1, \alpha \approx 5\pi/2) \rho_2 > |\rho_1|, 0 > \rho_1 > \rho$.

Aim of joint work: Show existence of symbolic dynamics for a return map of the above equation.

(Famous precursor: Result of Šil'nikov in \mathbb{R}^4 (1967).)

We describe the essential framework without reference to an equation:

- 1) (X, || ||) Banach space, decomposition $X = S \times \mathbb{C} \times \mathbb{C}$
- 2) C^0 -semigroup $T: \mathbb{R}_0^+ \to L_c(X, X)$,

$$T(t)(x_s, z_1, z_2) = (T_S(t)x_s, e^{(\rho_1 + i\omega_1)t}z_1, e^{(\rho_2 + i\omega_2)t}z_2)$$

where $||T_S(t)|| \leq Ke^{\rho t}$ for some K > 0, and

$$\rho < \rho_1 < 0 < \rho_2, \quad \rho_2 > |\rho_1|.$$

3) Consider the sets

$$S_{r_1,r_2} := \left\{ (x_S, z_1, z_2) \in X \mid ||x_S|| < r_1/K, |\mathbf{z_1}| = \mathbf{r_1}, 0 < |z_2| < r_2 \right\},$$

$$\Sigma_{r_1,r_2} := \left\{ (x_S, z_1, z_2) \in X \mid ||x_S|| < r_1/K, |z_1| < r_1, |\mathbf{z_2}| = \mathbf{r_2} \right\}.$$

For $x = (x_S, z_1, z_2) \in S_{r_1, r_2}$ there exists a unique time $\tau(x) > 0$ such that $T(\tau(x))x \in \Sigma_{r_1, r_2}$, namely

$$\tau(x) := \frac{1}{\rho_2} \log(\frac{r_2}{|z_2|}).$$

The local map.

$$P_0: S_{r_1,r_2} o \Sigma_{r_1,r_2}, \quad P_0(x) := T(au(x))x.$$

Explicitly: For $x = (x_S, z_1, z_2) \in S_{r_1, r_2}, \ z_2 = r_2 e^{i\theta_2}, \ z_1 = r_1 e^{i\theta_1},$

$$P_0(x) = (y_S, \underbrace{r_1 \left(\frac{r_2}{|z_2|}\right)^{\rho_1/\rho_2} \cdot e^{i(\omega_1 \tau(x) + \theta_1)}}_{=: w_1}, \underbrace{r_2 e^{i(\omega_2 \tau(x) + \theta_2)}}_{=: w_2})$$

where $||y_S|| \le ||x_S|| K e^{\rho \tau(x)} < r_1 e^{\rho \tau(x)}$.

Note: $|w_1| \sim |z_2|^{-\rho_1/\rho_2}$, 0 < exponent < 1. (Thus, $1 >> |w_1| >> |z_2|$.)

The global map. Assume there exists $\theta_1^*, \theta_2^* \in [0, 2\pi)$ and a C^1 map P_1 , with values in S_{r_1,r_2} and defined on the set

$$\Sigma_{r_1,r_2}^* := \left\{ y = (y_S, w_1, w_2 = r_2 e^{i\theta_2}) \in \Sigma_{r_1,r_2} \mid \max\{||y_S||, |w_1|, |\theta_2 - \theta_2^*|\} < \delta_2 \right\}$$

such that with $y^* := (0, 0, r_2 e^{i\theta_2^*}) \in \Sigma_{r_1, r_2}$ and $x^* = (x_S^*, r_1 e^{i\theta_1^*}, 0) \in S_{r_1, r_2}$ one has

$$P_1(y^*) = x^*.$$

Domain of P_1 :

The composition.

Set $I_2 := [\theta_2^* - \delta_2, \theta_2^* + \delta_2]$. If $\vartheta^{**} > \vartheta^* > 0$ are large enough and $\delta_1 \in (0, \pi/2)$, the set

$$D_{\vartheta*,\vartheta^{**}} := \left\{ (x_S, z_1 = r_1 e^{i\theta_1}, z_2 = r_2 e^{i\theta_2}) \in S_{r_1,r_2} \mid |\theta_1 - \theta_1^*| < \delta_1, \\ - \vartheta^{**} < \theta_2 \le -\vartheta^*, \\ |z_2| \in r_2 \cdot \exp[-\frac{\rho_2}{\omega_2} (I_2 - \theta_2)] \right\}$$

satisfies $P_0(D_{\vartheta*,\vartheta^{**}}) \subset \Sigma^*_{r_1,r_2}$, and hence one can define the composition

$$P:=P_1\circ P_0:D_{artheta*,artheta^{**}} o S_{r_1,r_2}.$$

A typical domain $D_{\vartheta *, \vartheta ^{**}}$:

Explicit formulas.

Describe P_1 in the form $y = (y_S, x_1 + iy_1, r_2 e^{i\theta_2}) \mapsto (\tilde{x}_S, r_1 e^{i\tilde{\theta}_1}, \tilde{z}_2)$, with C^1 functions $\tilde{x}_S, \tilde{\theta}_1, \tilde{z}_2$, and partial derivatives $\frac{\partial}{\partial \theta_2}|_{y^*}\tilde{z}_2, \frac{\partial}{\partial x_1}|_{y^*}\tilde{\theta}_1$, etc.

For
$$x = (x_S, r_1 e^{i\theta_1}, z_2) \in D_{\vartheta_*}$$
, set

$$\tau := \tau(x) \text{ (as above) }, r'_1 := r_1(r_2/|z_2|)^{\rho_1/\rho_2},$$

$$x_1 := r'_1 \cos(\omega_1 \tau + \theta_1), y_1 := r'_1 \sin(\omega_1 \tau + \theta_1),$$

$$y_S := T(\tau)x_S, ||y_S|| \le r_1 e^{\rho \tau} \sim |z_2|^{|\rho/\rho_2|}$$

Then
$$P(x) = (0, r_1 \exp\{i[\theta_1^* + \langle \nabla_3 \tilde{\theta}_1|_{y^*}, (x_1, y_1, \theta_2 - \theta_2^*) > + E_1]\},$$

 $\langle \nabla_3 \tilde{z}_2|_{y^*}, (x_1, y_1, \theta_2 - \theta_2^*) > + E_2) + E_3 + E_4,$

where $E_1, E_2 = o(r'_1 + r_2(\omega_2 \tau + \theta_2 - \theta_2^*)), E_3 = O(||y_S||), E_4 = (\tilde{x}_S, 0, 0),$ and $||\tilde{x}_S|| = O(r'_1 + \delta_2 r_2).$

(Briefly: Taylor expansion of first order w.r.t. 3d-Variables, but only to zero order w.r. to S.)

Set
$$Y_3 := \operatorname{span}(\frac{\partial}{\partial \theta_2}, \frac{\partial}{\partial x_1}, \frac{\partial}{\partial y_1})|_{y^*}, \quad X_3 := \operatorname{span}(\frac{\partial}{\partial \theta_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial y_2})|_{x^*},$$

then $T_{y^*} \Sigma_{r_1, r_2} = S \oplus Y_3, \quad T_{x^*} S_{r_1, r_2} = S \oplus X_3$

with a corresponding projection pr_3 to X_3 .

Transversality conditions:

1) $\operatorname{pr}_3 \circ DP_1(y^*)$ is invertible on Y_3 ;

2)
$$\zeta_2 := \frac{\partial \tilde{z}_2}{\partial \theta_2}|_{y^*} \neq 0$$
, or equivalently: $DP_1(y^*)\frac{\partial}{\partial \theta_2}|_{y^*} \notin \mathbb{R}\frac{\partial}{\partial \theta_1}|_{x^*}$.

(Geometric meaning:

The image of $D_{\vartheta*}$ under P is not coaxial with $D_{\vartheta*,\vartheta^{**}}$.)

Consequences:

- a) With $U_1 := \operatorname{pr}_3 DP_1(y^*) \operatorname{span}(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial y_1})|_{y^*}$, one has $X_3 = U_1 \oplus \mathbb{R} \cdot \zeta_2$.
- b) Let $H \subset X_3$ be a plane containing ζ_2 and such that $\frac{\partial}{\partial \theta_1} \not\in H$; then $\operatorname{pr}_{x_2,y_2}$ is an isomorphism on H.

(particularly convenient choice possible).

Choice of N_0, N_1 .

With suitably chosen numbers $\vartheta^0, \vartheta^{00}, \vartheta^1, \vartheta^{11}$ and $\varepsilon_1 > 0$, the sets

$$N_0:=D_{\vartheta^0,\vartheta^{00}},N_1:=D_{\vartheta^1,\vartheta^{11}}$$
 have the properties below:

- a) (their images lie on different sides of the plane $x^* + H$).
- b) For fixed $\bar{\theta}_1$ and $j \in \{1, 2\}$, the map

$$N_j \ni (0, r_1 e^{i\bar{\theta}_1}, z_2) \mapsto \operatorname{pr}_{x_2, y_2} \operatorname{pr}_{X_3} P((0, r_1 e^{i\bar{\theta}_1}, z_2))$$

is homeomorphic. (Easier to see for $\mathrm{pr}_H;$ then use that pr_{x_2,y_2} is isomorphic on H.)

Main Theorem. $\forall (...s_{-2}s_{-1}s_0s_1s_2...) \in \{0,1\}^{\mathbb{Z}} \exists \text{ trajectory } (x_j)_{j\in\mathbb{Z}}$ of P with $x_j \in N_{s_j}$ for all $j \in \mathbb{Z}$.

Proof (ideas):

1) For a finite, periodic symbol sequence $\alpha = (s_0, s_1, ..., s_k = s_0) \in \{0, 1\}^{k+1}$ and a map f defined on $N_0 \cup N_1$, define

$$N_{\alpha,f} := N_{s_0} \cap f^{-1}(N_{s_1}) \cap \dots \cap f^{-k}(N_{s_k}).$$

Lemma (Zgliczyński). If f, g are homotopic maps and the invariant set is disjoint to $\partial N_0 \cup \partial N_1$ throughout the homotopy, then

$$\operatorname{ind}(f^k, N_{\alpha,f}) = \operatorname{ind}(g^k, N_{\alpha,g}).$$

- 2) Three homotopies as in the lemma:
- a) $P \sim P_3 := \operatorname{pr}_{X_3} \circ P$; (eliminate S-component from image of P)
- b) $P_3 \sim \tilde{P}_3$; (eliminate θ_1 —dependence)
- c) $\tilde{P}_3 \sim P_2 := \operatorname{pr}_{x_2,y_2} \circ \tilde{P}_3$ (project values to x_2, y_2 -space).
- 3) With the Lemma and the reduction property of fixed point index:

$$\operatorname{ind}(P^k, N_\alpha) = \operatorname{ind}(P_2^k, N_\alpha) = \operatorname{ind}(P_2^k, N_\alpha \cap (x_2, y_2) - \operatorname{space}).$$

- **4)** $(N_0 \cup N_1) \cap (x_2, y_2)$ space consists of two sets homeomorphic to a ball in \mathbb{R}^2 , mapped by P_2 homeomorphically to a larger ball containing both.
- **5) Lemma.** For a map f as in the situation of 4), $\operatorname{ind}(f^k, N_\alpha) = \pm 1$.
- **6) Corollary.** There is a periodic orbit of P obeying α .
- 7) The main theorem now follows with a standard compactness argument, using that P is compact and that periodic symbol sequences are dense in the space of all symbol sequences (with the product topology).

Thank you

for your attention!

References

- [1] L.P. Šil'nikov, The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus, Dokl. Akad. Nauk. SSR, Tom. 172, No. 1, 1967. Translation: Soviet Math. Dokl. Vol. 8, No. 1 (1967).
- [2] H. Steinlein, Nichtlineare Funktionalanalysis, Lecture at Ludwig-Maximilians-Universität München, 1986/87.
- [3] H.-O. Walther, A homoclinic loop generated by variable delay, preprint, submitted 2012.
- [4] S. Wiggins, Global bifurcations and chaos, Springer-Verlag, New York, 1988, pp. 267-275.
- [5] E. Zeidler, Nonlinear Functional Analysis and its Applications I (Fixed Point Theorems), Springer-Verlag, New York, 1986 (Second Printing, 1992).
 (In particular, Section 13.7, pp. 574 - 578.)
- [6] P. Zgliczyński, Fixed point for iterations of maps, topological horseshoe and chaos, Topological Methods in Nonlinear Analysis (Journal of the Juliusz Schauder Center) Vol. 8 (1996), 169-177.