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Global Eradication of Polio

Global initiative to eradicate polio.
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Challenges of Eradication

Poliovirus remains endemic in Afghanistan, Nigeria, and
Pakistan.

Difficulties posed in these countries:

regional instability

areas of low immunization

large population movements

high birth rate

environmental transmission
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OPV mass vaccination strategy

Oral Polio Vaccine (OPV) is live-attenuated vaccine.

OPV is advocated for developing countries by WHO

Mass vaccination campaigns: a strategic way to achieve the
highest possible coverage in the shortest possible time.

Types of mass vaccination campaigns: NIDs, SNIDs.
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Meta-population models in epidemiology

Meta-population: populations are organized in connected
cities, towns, or “patches”.

Population movement:

short-term mobility

long-term migration

short term mobility has been modeled with mass-action
coupling

long-term migration has been modeled with linear flux terms

Vaccination strategy in meta-populations

optimal vaccine allocation

synchrony of population dynamics
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Model diagram (with 2 patches and no pulse vaccination)

Si = density of susceptilbles in patch i .
Ii = density of infected in patch i .
Gi = density of virus in environmental reservoir in patch i .
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General N-patch pulse vaccination model

Let 1 ≤ i ≤ N, k ∈ N, and 0 < ψk
i ≤ 1.

dSi
dt

= (1− pi )bi − diSi − Si
∑
j

βij(t)Ij − Si
∑
j

εij(t)Gj +
∑
j

mijSj

dIi
dt

= Si
∑
j

βij(t)Ij + Si
∑
j

εij(t)Gj − (di + µi )Ii +
∑
j

kij Ij

dGi

dt
= ξi (t)Ii − νi (t)Gi t 6= tki

dRi

dt
= pibi + µi Ii − diRi +

∑
j

lijRj


Si
(
tki
)

=
(
1− ψk

i

)
Si
(
(tki )−

)
Ri

(
tki
)

= ψk
i Si
(
(tki )−

)
t = tki

βij(t), εij(t), ξi (t), νi (t) are assumed to be 1-periodic (to capture
seasonality).
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Periodic pulses



dSi
dt

= (1− pi )bi − diSi − Si
∑
j

βij(t)Ij − Si
∑
j

εij(t)Gj +
∑
j

mijSj

dIi
dt

= Si
∑
j

βij(t)Ij + Si
∑
j

εij(t)Gj − (di + µi )Ii +
∑
j

kij Ij t 6= nτ + φ`

dGi

dt
= ξi (t)Ii − νi (t)Gi{

S (nτ + φ`) = D` · S ((nτ + φ`)
−) , t = nτ + φ`

where

n ∈ N, S = (S1, . . . ,SN)T , D` = diag
(
α`1, . . . , α

`
N

)
,

with α`i =

{
1− ψk

i if φ` = tki for some k ∈ N
1 otherwise

and 0 ≤ φ1 < φ2 < · · · < φp < τ where τ ∈ N is the fixed period.
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Disease-Free System

In the absence of infection, we obtain a linear impulsive system:

dS(t)

dt
= AS(t) + b, t 6= nτ + φ`

S (nτ + φ`) = D` · S
(
(nτ + φ`)

−)
Theorem

The disease-free linear impulsive system has a unique globally
asymptotically stable τ -periodic solution S(t).
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Disease-Free Periodic Orbit

Figure: Disease-Free Periodic Orbit: The components of S(t) for certain
set of parameters. (τ = 5 in this simulation)
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Linearization

Consider the infectious components linearized at S(t):

dIi
dt

= S i (t)
∑
j

βij(t)Ij + S i (t)
∑
j

εij(t)Gj − (di + µi )Ii +
∑
j

kij Ij

dGi

dt
= ξi (t)Ii − νi (t)Gi

Let Φ(t) be the principal fundamental solution.

Define r as the spectral radius of Φ(τ), i.e. r = ρ(Φ(τ)).
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Threshold Dynamics

Theorem (Global extinction when r < 1)

If r < 1, then the disease-free periodic orbit is globally
asymptotically stable.

Assume that:

(A1) There exists θ ∈ [0, τ) such that the matrix
(βij(θ) + kij)1≤i ,j≤N is irreducible.

Theorem (Uniform persistence when r > 1)

Suppose that r > 1 and (A1) holds. Then the system is uniformly
persistent, i.e. there exists δ > 0 such that if βij Ij(0) > 0 or
εijGj(0) > 0, for some 1 ≤ i , j ≤ N, then

lim inf
t→∞

Ii (t) > δ ∀i = 1, . . . ,N.
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Defining R0 (Bacaër and Guernaoui, 2006; Wang and Zhao, 2008)

Write the “infectious component linearization” as
dx

dt
= (F (t)− V (t))x where F := new infections.

Let Y (t, s), t ≥ s, be the evolution operator of the linear

τ -periodic system:
dy

dt
= −V (t)y .

Define the “next infection” operator L : Cτ → Cτ by

(Lφ)(t) =

∫ t

−∞
Y (t, s)F (s)φ(s) ds, ∀t ∈ R, φ ∈ Cτ .

where Cτ := the Banach space of continuous τ−periodic
functions from R→ R2N .

R0 := ρ(L)

R0 < 1⇔ r < 1 and R0 > 1⇔ r > 1.

R0 is threshold with biological meaning.
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Two identical patches (with no mass-action coupling)



dS1
dt

= b − dS1 − (1− f )β(t)I1S1 − f εG1S1 −mS1 + mS2

dI1
dt

= (1− f )β(t)I1S1 + f εG1S1 − (d + µ)I1 −mI1 + mI2 t 6= n

dG1

dt
= ξI1 − ν(t)G1

dS2
dt

= b − dS2 − (1− f )β(t)I2S2 − f εG2S2 −mS1 + mS2

dI2
dt

= (1− f )β(t)I2S2 + f εG2S2 − (d + µ)I2 −mI1 + mI2 t 6= n + φ

dG2

dt
= ξI2 − ν(t)G2{

S1 (n) = S1 (n−) , t = n
S2 (n + φ) = S2 ((n + φ)−) , t = n + φ

0 ≤ f ≤ 1 is fraction of environmental transmission.
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Importance of Synchronizing Pulses

Example with no seasonality or environmental transmission.

(a) R0 vs Phase difference φ (b) R0 vs Phase difference φ and
migration rate m
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Simulations of Impulsive Model

(c) In-phase (susceptibles) (d) In-phase (infected)

(e) Out-of-phase (susceptibles) (f) Out-of-phase (infected)
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Effect of Seasonality

Let β(t) = β(1 + a sin(2π(t − θ))).

It is best to synchronize pulse vaccinations during the season
before the high-transmission season.
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Environmental Transmission
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Pulse Vaccination vs Continuous Vaccination Strategy

Compared pulse vaccination and continuous vaccination
strategy in terms of R0 for a given expected number of
vaccinations per year.

Simulations show that synchronized pulse vaccination and
continuous vaccination are essentially equal.

Similar to recent result in SIR model (Onyango and Müller,
2013).

Should pulse vaccination have any advantage over continuous
vaccination?
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Stochastic Simulations

(g) Pulse Vaccination (susceptible) (h) Pulse Vaccination (infected)

(i) constant vaccination (susceptible) (j) constant vaccination (infected)
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Probability of Eradication

(k) Probability of eradication vs migration
rate

(l) Probability of eradication vs
mass-action coupling
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Probability of Eradication

(m) Probability of eradication vs migration
rate
(with seasonality)

(n) Probability of eradication vs
fraction of environmental transmission
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Summary and Conclusions

We consider an impulsive SIR-type meta-population model
with seasonality, environmental transmission, and arbitrary
pulse vaccination schedules in each patch.

A basic reproduction number, R0, is defined and proved to be
a global threshold for the system.

Numerical calculations show the importance of, both,
synchronizing the pulse vaccinations between the patches.

When including stochasticity, it is found that pulse
vaccination has a major advantage over a continuous
vaccination strategy in terms of the probability of eradication.
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Ongoing and Future Work

Include multiple susceptibility classes to capture the fact that
multiple doses of OPV are needed to gain immunity.

Investigate reversion of vaccine virus to wild-polio virus and
the effect on eradication.

Parametrize model.
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