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Pulmonary surfactant. Research motivation.

In late 1920s von Neergaard1 identified the function of the
pulmonary surfactant in increasing the compliance of the
lungs by reducing surface tension. However the significance
of his discovery was not understood by the scientific and
medical community at that time. He also realized the im-
portance of having low surface tension in lungs of newborn
infants. Later, in the middle of the 1950s, Pattle2 and
Clements3 rediscovered the importance of surfactant and
low surface tension in the lungs. At the end of that decade
it was discovered that the lack of surfactant caused infant
respiratory distress syndrome (IRDS).

1Kurt von Neergaard. Neue Auffassungen uber einen Grundbegriff der Atemmechanik. Die Re-

traktionskraft der Lunge, abhaenging von der Oberflaechenspannung in den Alveolen. Z. Gesant Exp

Med (Germany) 66: 373-394 (1929)
2R.E. Pattle. Properties, function and origin of the alveolar lining layer. Nature, 175: 1125-1126

(1955)
3J.A. Clements. Surface tension of lung extracts. Proc Soc Exp Biol Med, 95: 170-172 (1957)
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Pulmonary surfactant. Research motivation.
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Lubrication approximation model.

The lubrication approximation is widely used to study the
dynamics of viscous thin films. The following model of a
thin film of a viscous, incompressible, Newtonian fluid lying
on a horizontal plane, with a monolayer of surfactant on its
surface was derived by Jensen and Grotberg4 in 1992:

ht + 1
3(h3(Shxxx − Ghx + 3Ah−4hx))x + 1

2(h2σx)x = 0, (1)

Γt + 1
2(Γh2(Shxxx − Ghx + 3Ah−4hx))x + (Γhσx)x = (DΓx)x, (2)

This model is the generalization of the original system de-
rived by Gaver and Grotberg5 in 1990; the new model in-
cludes a nonlinear equation of state and van der Waals
forces.

4O.E. Jensen, J.B. Grotberg. Insoluble surfactant spreading on a thin viscous film: shock evolution

and film rupture. J. Fluid Mech., 240:259–288, 1992
5D.P. Gaver, J.B. Grotberg. The dynamics of a localized surfactant on a thin film. J. Fluid Mech.,

213:127–148, 1990
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Lubrication approximation model.

The lubrication approximation is widely used to study the
dynamics of viscous thin films. The following model of a
thin film of a viscous, incompressible, Newtonian fluid lying
on a horizontal plane, with a monolayer of surfactant on its
surface was derived by Jensen and Grotberg4 in 1992:

ht + 1
3(h3(Shxxx − Ghx + 3Ah−4hx))x + 1

2(h2σx)x = 0, (1)

Γt + 1
2(Γh2(Shxxx − Ghx + 3Ah−4hx))x + (Γhσx)x = (DΓx)x, (2)

This model is the generalization of the original system de-
rived by Gaver and Grotberg5 in 1990; the new model in-
cludes a nonlinear equation of state and van der Waals
forces.
• h is the film height
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Lubrication approximation model.

The lubrication approximation is widely used to study the
dynamics of viscous thin films. The following model of a
thin film of a viscous, incompressible, Newtonian fluid lying
on a horizontal plane, with a monolayer of surfactant on its
surface was derived by Jensen and Grotberg4 in 1992:

ht + 1
3(h3(Shxxx − Ghx + 3Ah−4hx))x + 1

2(h2σx)x = 0, (1)

Γt + 1
2(Γh2(Shxxx − Ghx + 3Ah−4hx))x + (Γhσx)x = (DΓx)x, (2)

This model is the generalization of the original system de-
rived by Gaver and Grotberg5 in 1990; the new model in-
cludes a nonlinear equation of state and van der Waals
forces.
• Γ is the surfactant concentration in the monolayer normal-
ized on the saturation surfactant concentration Γs
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Lubrication approximation model.

The lubrication approximation is widely used to study the
dynamics of viscous thin films. The following model of a
thin film of a viscous, incompressible, Newtonian fluid lying
on a horizontal plane, with a monolayer of surfactant on its
surface was derived by Jensen and Grotberg4 in 1992:

ht + 1
3(h3(Shxxx − Ghx + 3Ah−4hx))x + 1

2(h2σx)x = 0, (1)

Γt + 1
2(Γh2(Shxxx − Ghx + 3Ah−4hx))x + (Γhσx)x = (DΓx)x, (2)

This model is the generalization of the original system de-
rived by Gaver and Grotberg5 in 1990; the new model in-
cludes a nonlinear equation of state and van der Waals
forces.
• σ is the surface tension
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Lubrication approximation model.

The lubrication approximation is widely used to study the
dynamics of viscous thin films. The following model of a
thin film of a viscous, incompressible, Newtonian fluid lying
on a horizontal plane, with a monolayer of surfactant on its
surface was derived by Jensen and Grotberg4 in 1992:

ht + 1
3(h3(Shxxx − Ghx + 3Ah−4hx))x + 1

2(h2σx)x = 0, (1)

Γt + 1
2(Γh2(Shxxx − Ghx + 3Ah−4hx))x + (Γhσx)x = (DΓx)x, (2)

This model is the generalization of the original system de-
rived by Gaver and Grotberg5 in 1990; the new model in-
cludes a nonlinear equation of state and van der Waals
forces.
• S is connected with capillarity forces (Marangoni effects)
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Lubrication approximation model.

The lubrication approximation is widely used to study the
dynamics of viscous thin films. The following model of a
thin film of a viscous, incompressible, Newtonian fluid lying
on a horizontal plane, with a monolayer of surfactant on its
surface was derived by Jensen and Grotberg4 in 1992:

ht + 1
3(h3(Shxxx − Ghx + 3Ah−4hx))x + 1

2(h2σx)x = 0, (1)

Γt + 1
2(Γh2(Shxxx − Ghx + 3Ah−4hx))x + (Γhσx)x = (DΓx)x, (2)

This model is the generalization of the original system de-
rived by Gaver and Grotberg5 in 1990; the new model in-
cludes a nonlinear equation of state and van der Waals
forces.
• G is a parameter representing a gravitational force directed
vertically downwards
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Lubrication approximation model.

The lubrication approximation is widely used to study the
dynamics of viscous thin films. The following model of a
thin film of a viscous, incompressible, Newtonian fluid lying
on a horizontal plane, with a monolayer of surfactant on its
surface was derived by Jensen and Grotberg4 in 1992:

ht + 1
3(h3(Shxxx − Ghx + 3Ah−4hx))x + 1

2(h2σx)x = 0, (1)

Γt + 1
2(Γh2(Shxxx − Ghx + 3Ah−4hx))x + (Γhσx)x = (DΓx)x, (2)

This model is the generalization of the original system de-
rived by Gaver and Grotberg5 in 1990; the new model in-
cludes a nonlinear equation of state and van der Waals
forces.
• A is related to the Hamaker constant and connected with
intermolecular van der Waals forces
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Lubrication approximation model.

The lubrication approximation is widely used to study the
dynamics of viscous thin films. The following model of a
thin film of a viscous, incompressible, Newtonian fluid lying
on a horizontal plane, with a monolayer of surfactant on its
surface was derived by Jensen and Grotberg4 in 1992:

ht + 1
3(h3(Shxxx − Ghx + 3Ah−4hx))x + 1

2(h2σx)x = 0, (1)

Γt + 1
2(Γh2(Shxxx − Ghx + 3Ah−4hx))x + (Γhσx)x = (DΓx)x, (2)

This model is the generalization of the original system de-
rived by Gaver and Grotberg5 in 1990; the new model in-
cludes a nonlinear equation of state and van der Waals
forces.
• D is related to the surface diffusion and it is assumed
constant
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Lubrication approximation model: equations of state

Assume that the local surface tension and local surface dif-
fusivity are functions of the local surface concentration. Ac-
cordingly we write

σ = σ(Γ), D = D(Γ).

Borgas&Grotberg6 in 1988 proposed the following equations
of state (Sheludko (1966) σ ∼ Γ−3)

σ(Γ) = (1 + θΓ)−3, D(Γ) = (1 + τΓ)−k, (3)

where θ, τ and k are positive empirical parameters. In fact,
the parameter θ depends on the material properties of the
monolayer; and the alternative ’switch off’ laws are

σ(Γ) ' (1− Γ)`+, D(Γ) ' (1− Γ)
q
+, (4)

where ` > 0 and q > 0. Jensen&Grotberg1 in 1992 specified
(3):

σ(Γ) = β+1
(1+θ(β)Γ)3 − β, θ(β) = (β+1

β )
1
3 − 1, D(Γ) = const > 0, (5)

where β relates to the ”activity” of the surfactant.
6M.S. Borgas, J.B. Grotberg. Monolayer flow on a thin film. J. Fluid Mech., 193:151–170, 1988
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Lubrication approximation model: equations of state

Foda&Cox’s results7 for an oil layer on water (experimental data points

(•)) and a curve from the model equation of state (3) with θ = 0.15.

7M. Foda,.R.G. Cox, J. Fluid Mech. 101, 33-57 (1980).
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Lubrication approximation model: equations of state

Also in many physical applications the dependence σ(Γ) is
taken from Frumkin8 surface equation of state (by Lucassen&
Hansen9in 1967):

σ(Γ) = σ0 + 2.303RTΓs
(
b( Γ

Γs
)2 + ln(1− Γ

Γs
)
)
, (6)

where σ0 is the surface tension of pure solvent and b is the
Frumkin constant (for example, b = 0 for pentanoic acid).
This equation, first formulated as an empirical relation,
can be obtained from a general surface equation of state
if one assumes ideal surface behaviour. This assumption
has been found to be generally valid for ionic surfactants at
the aqueous solution-air and aqueous solution-hydrocarbon
interfaces, with the exception of C18 or longer compounds
at the aqueous solution-air interface.

8Alexander Naumovich Frumkin, Electrocapillary curve of higher aliphatic acids and the state equation

of the surface layer, Zeitschrift für Physikalische Chemie. (Leipzig) 116, 466–484 (1925)
9J. Lucassen, Robert S. Hansen. Damping of Waves on Monolayer-Covered Surfaces II. Influence

of Bulk-to-Surface Diffusional Interchange on Ripple Characteristics. Journal of Colloid and Interface

Science, 23: 319–328 (1967)
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Mathematical overview: existence

Observe that the coupled system of interest (1)–(2) is degen-
erate parabolic in the sense that uniform parabolicity is lost
if h vanishes. While modeling issues related to surfactant
spreading on thin liquid films have attracted considerable
interest since the early 1970th, the analytical research has
started only recently.

• Renardy10 in 1996:
S = G = A = 0, and σ(Γ) > 0, σ′(Γ) < 0, D(Γ) > 0
local existence of weak solutions;

• Barrett, Garcke, Nürnberg11 in 2003:
G = 0, and σ(Γ) = 1− Γ, D(Γ) = D0 > 0, h0 > ν > 0
local existence of weak solutions under conjecture Γ 6 1.

10M. Renardy. On an equation describing the spreading of surfactants on thin films. Nonlinear

Anal., 26:1207–1219, 1996
11J.W. Barrett, H. Garcke, R. Nürnberg. Finite Element Approximation of Surfactant Spreading

on a Thin Film. SIAM J. Numer. Anal., 41(4):1427–1464, 2003
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Mathematical overview: existence

• Garcke, Wieland12 in 2006:
G = A = 0, and −C1Γ(1 + |Γ|r) 6 σ′(Γ) 6 −C2Γ (r ∈ (0, 2)),
D(Γ) = D0 > 0, h0 > 0 global existence of weak solutions;

• Escher, Hillairet, Ph. Laurencot, Walker13,14 in 2011:
S = A = 0, and σ ∈ C3([0,∞)), σ(0) > 0, 0 < σ0 6 −σ′ 6 σ∞ or
G = A = 0, and σ ∈ C1((0,∞)) ∩ C([0,∞)), σ(1) = 0,
0 < −σ′(z) < σ0 ∀ z ∈ (0, 1), σ1

1+zθ
6 −σ′(z) < σ0 ∀ z > 1 (θ ∈ [0, 1));

D(Γ) = D0 > 0, h0 > 0, Γ0 > 0 global existence of weak solu-
tions.

12H. Garcke, S. Wieland. Surfactant spreading on thin viscous films: nonnegative solutions of a

coupled degenerate system. SIAM J. Math. Anal., 37(6):20252048, 2006
13J. Escher, M. Hillairet, Ph. Laurenccot, Ch. Walker. Global weak solutions for a degenerate

parabolic system modeling the spreading of insoluble surfactant, to appear in Indiana Math. Journal,

preprint 2011
14J. Escher, M. Hillairet, Ph. Laurenccot, Ch. Walker. Weak solutions to a thin film model with

capillary effects and insoluble surfactant. arXiv:1109.6762v1, 2011
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Mathematical overview: existence

Summary of unsolved problems to existence:

• the case of degenerate diffusion D(Γ) > 0, D(1) = 0 has not
been studied;

• the case of presence of van der Waals forces (A 6= 0) and
nonnegative initial data h0 > 0 has not been studied;

• the boundedness of Γ > 0, i. e. Γ 6 1, has not been proven.
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Generalization and assumptions

We will consider natural generalization of (1)–(2) in a di-
mensionless form, namely, the following problem:

ht + (fn(h)(hxxx − hx + F ′′n,m(h)hx))x + (fn−1(h)σx)x = 0, (7)

Γt+(Γfn−1(h)(hxxx−hx+F ′′n,m(h)hx))x+(Γfn−2(h)σx)x = (D(Γ)Γx)x,
(8)

hx(±a, t) = hxxx(±a, t) = Γx(±a, t) = 0 (9)

h(x, 0) = h0(x), Γ(x, 0) = Γ0(x), (10)

in QT = (0, T )× Ω, where Ω = (−a, a), n > 2.

fn(z) =
|z|n

n
, f0(z) = 1, F ′′n,m(z) =

|z|m
fn(z)

> 0.

For example,

F3,−1(z) =
1

2
z−2 + z − 3

2
for n = 3, m = −1.
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Generalization and assumptions

Assume that the initial data satisfy the conditions:

0 6 h0 ∈ H1(Ω), Fn,m(h0) ∈ L1(Ω),

Γ0 ∈ L2(Ω), 0 6 Γ0 6 1, Φ(Γ0) ∈ L1(Ω).
(11)

σ(z) = Φ(z)− zΦ′(z), where Φ(z) is the free energy

(A1) the function Φ : [0, 1]→ R+
0 is convex, Φ′(z) 6 0, and

lim
z→0+

z Φ′′(z) = C0 (⇔ lim
z→0+

σ′(z) = −C0), 0 < C0 < +∞;

(A2) the function D : [0, 1]→ R+
0 , D′(z) 6 0, and

lim
z→1−

D(z)Φ′′(z) = C1 (⇔ lim
z→1−

D(z)σ′(z) = −C1), (12)

where 0 < C1 6∞ if D(1) = 0, and C1 =∞ if D(1) > 0.
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Generalization and assumptions

For C1 =∞ the condition (12) is in the agreement with the
Frumkin surface equation.

For D(z) = D0(1− z)
q
+, q ∈ (0, 1) and C1 <∞ we have

σ ∼ 1− C0z as z → 0+, σ ∼ C1
D0(1−q)(1− z)

1−q
+ as z → 1−.

Conjecture: we believe that the boundedness of Γ, i. e. Γ 6 1,
is the result of the local concavity σ(Γ) as Γ→ 1−.

20



Main results: existence

Theorem 1 . Let m > n− 2 for n ∈ [2, 4), m > n
2 for n ∈ [4,∞),

and (A1)–(A2) hold. Assume that the initial data (h0,Γ0)
satisfy (11). Then for some time Tloc > 0 there exists a
weak generalized solution (h,Γ) of the problem (7)–(10), in
addition, h > 0 and 0 6 Γ 6 1 almost everywhere in QTloc. If
m 6 n+ 2 (and M < Mc for m = n+ 2) then Tloc can be taken
arbitrarily large.

Note that the Theorem 1 holds true in the absence of van
der Waals forces. In this special case the solution exists
globally in time for all n > 2.

If D(z) = D0(1−z)q, where q > 0 and D0 > 0, then Γ ∈ Cα,
α
2

loc (QT )
for some α = α(q) ∈ (0, 1).
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Main results: rupture

For the case m 6 −1 under an additional assumption

h0 ∈ H1(Ω) ∩ C4+α(Ω̄), h0 > ν > 0,

using the method described in [Kai-Seng Chou, Ying-Chuen
Kwong. Finite time rupture for thin films under van der
Waals forces. Nonlinearity, 20(2): 299-317, 2007], one can
show that there exists a time τ = τ (ν) such that

lim
t→τ
‖h(., t)‖H1(Ω) =∞ and lim inf

t→τ
h(x, t) = 0

In the general situation, finite time rupture for the case

−1 < m < min{n2 , n− 2}

is still an open question.
22



Research in progress

Now we have some progress in obtaining ’exact’ sufficient
conditions

• for finite speed of support propagation when

2 6 n < 3 and n
2 < m 6 n + 2

• for waiting time phenomenon when

2 6 n < 3 and 2n
3 < m 6 n + 2
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Summary

Summary of main results:

• we proved existence of weak generalized solutions with
nonnegative initial data in the case of degenerate diffusion
D(Γ) > 0 under presence of van der Waals forces;

• we proved boundedness of Γ, i. e. 0 6 Γ 6 1;

• we proved Γ ∈ C
α,α2
loc (Q̄T ) when D(z) = D0(1 − z)q, where

α ∈ (0, 1), q > 0 and D0 > 0;
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Thank you !

THANK YOU FOR YOUR ATTENTION

THE END.
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