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Graphical Gaussian models
Adding means
Behrens–Fisher problem
Kruskal’s theorem

Consider
Y = (Yα)α∈V ∼ N|V |(0,Σ)

and let let K = Σ−1 be the concentration matrix.
The partial correlation between Yα and Yβ given all other variables
is

ραβ |V \{α,β} = −kαβ/
√

kααkββ . (1)

Thus
kαβ = 0 ⇐⇒ Yα⊥⊥Yβ |YV \{α,β}.

A graphical Gaussian model is represented by an undirected graph
G = (V ,E ) with Y as above and K ∈ S+(G), the set of
(symmetric) positive definite matrices with

α 6∼ β ⇒ kαβ = 0.
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Graphical Gaussian models
Adding means
Behrens–Fisher problem
Kruskal’s theorem

We shall be interested in also adding means so that Y ∼ N (µ,Σ)
with µ ∈ Ω, where Ω is a linear subspace of RV .

Based on observations Y 1, . . . ,Y n the likelihood function is

L(µ,K ) ∝ det Kn/2 exp−
∑

1≤i≤n(y i−µ)TK(y i−µ)/2 . (2)

If µ is unrestricted so that µ ∈ Ω = RV , L is maximised over µ for
fixed K by µ̂ = µ∗ = ȳ and inference about K can be based on

L(µ̂,K ; y) ∝ det Kn/2 exp{− tr(KW )/2}, (3)

where W =
∑n

i=1(y i − µ∗)(y i − µ∗)T is the matrix of sums of
squares and products of the residuals.
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Adding means
Behrens–Fisher problem
Kruskal’s theorem

In general the situation is more complex. Consider the graph

Y1 Y2

representing two independent Gaussian variables with unknown
variances σ2

1 and σ2
2. The Behrens–Fisher problem (Scheffé, 1944)

occurs when estimating µ = (µ1, µ2) under the restriction µ1 = µ2.

The least squares estimator (LSE) µ∗ = (ȳ1, ȳ2) is then not the
MLE, the likelihood function (2) under the hypothesis µ1 = µ2

may have multiple modes (Drton, 2008), and there there is no
similar test for the hypothesis.
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Graphical Gaussian models
Adding means
Behrens–Fisher problem
Kruskal’s theorem

Kruskal (1968) found the following necessary and sufficient
condition for the LSE µ∗ and MLE µ̂ to agree for a fixed Σ:

Theorem (Kruskal)

Let Y ∼ N (µ,Σ) with unknown mean µ ∈ Ω and known Σ. Then
the estimators µ∗ and µ̂ coincide if and only if Ω is invariant under
K = Σ−1, i.e. if and only if

K Ω ⊆ Ω. (4)

As K Ω ⊆ Ω if and only if ΣΩ ⊆ Ω this can equivalently be
expressed in terms of Σ.
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Graphical Gaussian models
Adding means
Behrens–Fisher problem
Kruskal’s theorem

Consequently, if K ∈ Θ is unknown and K Ω ⊆ Ω for all K ∈ Θ we
also have µ∗ = µ̂ and inference on K can be based on the profile
likelihood function (3)

L(µ̂,K ) ∝ det Kn/2 exp{− tr(KW )/2}.

The Behrens–Fisher problem is then resolved if we also restrict the
variances σ2

1 = σ2
2 = σ2 since(

σ2 0

0 σ2

)(
α

α

)
=

(
σ2α

σ2α

)
=

(
β

β

)
,

so the mean space is stable under Σ.
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Graphical Gaussian models
Adding means
Behrens–Fisher problem
Kruskal’s theorem

The additional symmetry in the concentration matrix induced by
the restriction σ2

1 = σ2
2 is represented by a coloured graph

Y1 Y2

where nodes of same colour have identical elements in their
concentration matrix.
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Basic definitions
Some classical examples

Three types of symmetry restrictions:

I RCON restricts concentration matrix;

I RCOR restricts partial correlations;

I RCOP has restrictions generated by permutation symmetry.
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Three types of symmetry restrictions:

I RCON restricts concentration matrix;
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Basic definitions
Some classical examples

Three types of symmetry restrictions:

I RCON restricts concentration matrix;

I RCOR restricts partial correlations;

I RCOP has restrictions generated by permutation symmetry.

In principle one could/should also study RCOV-models given by
symmetry restrictions in the covariance matrix. These are in
general different from any of the above but have as far as I know
not been investigated at this point in time.
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Basic definitions
Some classical examples

Graph colouring

Undirected graph G = (V ,E ).

Colouring vertices of G with different colours induces partitioning
of V into vertex colour classes.

Colouring edges E partitions E into disjoint edge colour classes

V = V1 ∪ · · · ∪ Vp, E = E1 ∪ · · · ∪ Eq.

V = {V1, . . . ,Vp} is a vertex colouring,

E = {E1, . . . ,Eq} is an edge colouring,

G = (V, E) is a coloured graph.
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Basic definitions
Some classical examples

I Models with symmetry in covariance are classical and admit
unified theory (Wilks, 1946; Votaw, 1948; Olkin and Press,
1969; Andersson, 1975; Andersson et al., 1983);

I Stationary autoregressions (circular) (Anderson, 1942; Leipnik,
1947);

I Spatial Markov models (Whittle, 1954; Besag, 1974; Besag
and Moran, 1975);

I General combinations with conditional independence are more
recent (Hylleberg et al., 1993; Andersson and Madsen, 1998;
Madsen, 2000).
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Mathematics marks
Model specification

Empirical concentration matrix (inverse covariance) of examination
marks of 88 students in 5 mathematical subjects.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.24 −2.44 −2.74 0.01 −0.14

Vectors −2.44 10.43 −4.71 −0.79 −0.17

Algebra −2.74 −4.71 26.95 −7.05 −4.70

Analysis 0.01 −0.79 −7.05 9.88 −2.02

Statistics −0.14 −0.17 −4.70 −2.02 6.45

Data reported in Mardia et al. (1979)
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Mathematics marks
Model specification

RCON model

Data support model with symmetry restrictions as in figure:

Mechanics

Vectors

Algebra

Analysis

Statistics

��
��

��

PPPPPP ��
��

��

PPPPPPs
s

c
s
s

Elements of concentration matrix corresponding to same colours
are identical.
Black or white neutral and corresponding parameters vary freely.
RCON model since restrictions apply to concentration matrix
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Mathematics marks
Model specification

RCON model

1. Diagonal elements K corresponding to vertices in the same
vertex colour class must be identical.

2. Off–diagonal entries of K corresponding to edges in the same
edge colour class must be identical.

Diagonal of K thus specified by Tp-dimensional vector η and
off-diagonal elements by a q dimensional vector δ so K = K (η, δ).
The set of positive definite matrices which satisfy these restrictions
is denoted S+(V, E).
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Mathematics marks
Model specification

u

u u

uY4

Y1

Y3

Y2

Corresponding RCON model will have concentration matrix

K =


k11 k12 0 k14

k21 k22 k23 0

0 k32 k33 k34

k41 0 k43 k44

 =


η1 δ1 0 δ2

δ1 η2 δ1 0

0 δ1 η1 δ2

δ2 0 δ2 η2

 .
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Anxiety and anger
Model specification
Likelihood equations

Cox and Wermuth (1993) report data on personality characteristics
on 684 students:
Table below shows empirical concentrations (×100) (on and above
diagonal), partial correlations (below diagonal), and standard
deviations for personality characteristics of 684 students.

SX SN TX TN

SX (State anxiety) 0.58 −0.30 −0.23 0.02

SN (State anger) 0.45 0.79 −0.02 −0.15

TX (Trait anxiety) 0.47 0.03 0.41 −0.11

TN (Trait anger) −0.04 0.33 0.32 0.27

Standard deviations 6.10 6.70 5.68 6.57
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Anxiety and anger
Model specification
Likelihood equations

RCOR model

Data strongly support conditional independence model displayed
below with partial correlations strikingly similar in pairs:

e

e e

eTX

SX

TN

SN

Scales for individual variables may not be compatible. Partial
correlations invariant under changes of scale, and more meaningful.
Such symmetry models are denoted RCOR models.
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Anxiety and anger
Model specification
Likelihood equations

RCOR models

1. Diagonal elements of K corresponding to vertices in same
vertex colour class must be identical.

2. partial correlations along edges in the same edge colour class
must be identical.

The set of positive definite matrices which satisfy the restrictions
of an RCOR(V, E) model is denoted R+(V, E).
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Anxiety and anger
Model specification
Likelihood equations

Define A as diagonal matrix with

aα =
√

kαα = ηu, α ∈ u ∈ V

We can uniquely represent K ∈ R+(V, E) as

K = ACA = A(η)C (δ)A(η),

where C has all diagonal entries equal to one and off-diagonal
entries are negative partial correlations

cαβ = −ραβ |V \{α,β} = kαβ/
√

kααkββ = kαβ/(aαaβ).

Vertex colour classes restrict A, whereas edge colour classes
restrict C .
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Anxiety and anger
Model specification
Likelihood equations

Although restrictions linear in each of A and C , they are in general
not linear in K .

For unrestricted mean, or mean zero RCOR models are curved
exponential families.

Letting λu = log ηu the profile likelihood function becomes

log L =
f

2
log det{C (δ)}+ f

∑
u∈V

λu tr(Ku)− 1

2
tr{C (δ)A(λ)WA(λ)}

log L concave in λ for fixed δ and vice versa, but not in general
jointly.
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Frets’ heads
Model specification
Identifying the graph colouring

RCOP model

Data from Frets (1921). Length and breadth of the heads of 25
pairs of first and second sons. Data support the model

u

u u

uB1

L1

B2

L2

Assume distribution unchanged if sons are switched. RCOP model
as determined by permutation of labels.

Both RCON and RCOR because all aspects of the joint
distribution are unaltered when labels are switched.
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Frets’ heads
Model specification
Identifying the graph colouring

Let G be permutation matrix for elements of V . If Y ∼ N|V |(0,Σ)

then GY ∼ N|V |(0,G ΣG>).

Let Γ ⊆ S(V ) be a subgroup of such permutations.

Distribution of Y invariant under the action of Γ if and only if

G ΣG> = Σ for all G ∈ Γ. (5)

Since G satisfies G−1 = G>, (5) is equivalent to

G Σ = ΣG for all G ∈ Γ, (6)

i.e. that G commutes with Σ or, equivalently, that G commutes
with K :

GK = KG for all G ∈ Γ.

Steffen Lauritzen University of Oxford Estimation of Means in Graphical Gaussian Models with Symmetries



Introduction
Graphical models with symmetry

Symmetry restrictions on concentrations
Symmetry restrictions on partial correlations

Permutation symmetry
Stability of mean spaces

Group generated partitions
References

Frets’ heads
Model specification
Identifying the graph colouring

We must insist that zero elements of K are preserved, i.e. G is
automorphism of the graph, mapping edges to edges:

G (α) ∼ G (β) ⇐⇒ α ∼ β for all G ∈ Γ,

An RCOP model RCOP(G, Γ) generated by Γ ⊆ Aut(G) is given by
assuming

K ∈ S+(G, Γ) = S+(G) ∩ S+(Γ)

where S+(Γ) is the set of positive definite matrices satisfying

GK = KG for all G ∈ Γ.
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Frets’ heads
Model specification
Identifying the graph colouring

An RCOP model can also be represented by a graph colouring:

If V denotes the vertex orbits of Γ, i.e. the equivalence classes of

α ≡Γ β ⇐⇒ β = G (α) for some G ∈ Γ,

and similarly E the edge orbits, i.e. the equivalence classes of

{α, γ} ≡Γ {β, δ} ⇐⇒ {β, δ} = {G (α),G (γ)} for some G ∈ Γ,

then we have

S+(G, Γ) = S+(V, E) = R+(V, E).

Hence an RCOP model can also be represented as an RCON or an
RCOR model with vertex orbits as vertex colour classes and edge
orbits as edge colour classes.
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A technical lemma
Mean partitions

For each vertex colour class v ∈ V let T v be the |V | × |V |
diagonal matrix with entries T v

αα = 1 if α ∈ u and 0 otherwise,i.e.
T v is the indicator for v .

Similarly, for each edge colour class e ∈ E let T e have entries
T e
αβ = 1 if {α, β} ∈ e and 0 otherwise, i.e. T e is the adjacency

matrix for e.

Now any K ∈ S+(V, E) can in a unique way be written as

K =
∑

u∈V∪E
θuT u

and any K ∈ R+(V, E) as ACA with

A =
∑
u∈V

ηuT u, C = I +
∑
u∈E

δuT u.
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A technical lemma
Mean partitions

Gehrmann and Lauritzen (2012) now show that for a given colored
graph G = (V, E) we have:

Lemma
The following are equivalent

K Ω ⊆ Ω for all K ∈ S+(V, E);

K Ω ⊆ Ω for all K ∈ R+(V, E);

T uΩ ⊆ Ω for all u ∈ V ∪ E .

Thus, by Kruskal’s theorem, we can check stability of mean spaces
in both RCON and RCON models by checking stability under the
action of the model generators T u, u ∈ V ∪ E .
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A technical lemma
Mean partitions

We shall be particularly interested in mean spaces generated by a
partition M = {m} of the vertex set V , so that for

Ω = Ω(M) = {µ : µα = µβ whenever α, β ∈ m.}.

It is straightforward to show (Gehrmann and Lauritzen, 2012) that

Proposition (Vertex stability)

The space Ω(M) is stable under T v , v ∈ V if and only if the
partition M is finer than V.

The Behrens–Fisher problem represents a case where this condition
is violated unless variances are assumed identical.
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A technical lemma
Mean partitions

To discuss stability under edge colour classes we require the notion
of an equitable partition.

A partition M of V is equitable w.r.t. a graph G = (V ,E ) if for
any α, β ∈ n ∈M it holds that

| neE (α) ∩m| = | neE (β) ∩m| for all m ∈M.

In words, any two vertices in the same partition set have the same
number of neighbours in any other partition set. So in particular,
all subgraphs induced by partition sets are regular graphs.
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A technical lemma
Mean partitions

Vertex regular graphs

We say that a coloured graph G = (V, E) is vertex regular if V is
an equitable partition of the subgraph G e = (V , e) induced by the
edge colour class e for all e ∈ E .

It now follows easily and also from a result of Chan and Godsil
(1997) that

Proposition (Edge stability)

The space Ω(M) is stable under T e , e ∈ V if and only if the
coloured graph (M, E) is vertex regular.
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A technical lemma
Mean partitions

Combining the propositions with the lemma and Kruskal’s theorem
we find that for both RCON and RCOP models we have

Theorem
The LSE and MLE for µ under the assumption that µ ∈ Ω(M) are
identical if and only if both of the following hold:

(i) M is finer than V;

(ii) The coloured graph (M, E) is vertex regular.
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Examples

If both the mean symmetry and concentration symmetry is
determined by group invariance, we have M = V. Gehrmann and
Lauritzen (2012) show that if G = (V, E) represents and RCOP
model, G is necessarily vertex regular.

Hence for RCOP models with natural mean restrictions we have
µ∗ = µ̂.
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Examples

Frets’ heads revisited

u

u u

uB1

L1

B2

L2

For the mean partition to be finer than the concentration partition
we can either have different mean lengths, or different mean
breadths, or both, or none of these.

For the mean partition to be vertex regular we need to have either
both means identical or all means different. Thus there are two
benign possibilities.
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Examples

Anxiety and anger revisited

e

e e

eTX

SX

TN

SN

Here there are no benign mean hypotheses as the individual
concentrations are all different.
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