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Meta-analysis vs Structural Meta-Analysis

Meta-analysis is combining evidence about important parameters
from experiments or studies performed independently under partially
comparable circumstances;

Structural meta-analysis (Massa and Lauritzen, 2010), is the
combination of evidence about relationships between variables from
studies or experiments carried out independently under partially
comparable conditions.

By relationships between variables we mean conditional
independence relations, as defined by Dawid (1979).
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Example: Two surveys
Gilula and McCullogh (2011)

Suppose data are available from two surveys A and B .

Suppose there is no single investigation that contains all variables of
interest.

For example:
Survey A investigates: age, income, gender, smoking habits, . . .;
Survey B investigates: age, income, opinion about banning smoking in
public, . . ..
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Example: Cancer Studies
DuMouchel and Harris (1983)

Rows: 5 studies.

Columns: 10 variables investigated.

A filled circle means data available.



Example: Teen Drinking
Dee and Evans (2003)

Data on teen drinking;

Data on educational attainment;

No dataset that contains both information on teen drinking and
educational attainment.

Study the effect of teen drinking on educational attainment.



Example: Diseasome
Goh et al. (2007)

Example of a graphical models meta-analysis.
A large set of diseases and relevant genes is combined to form “the
human diseasome” bipartite network.

The authors also generate two biologically relevant networks, the
human disease network projection and the disease gene network
projection.
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Diseasome
Goh et al. (2007)

A subset of the diseasome bipartite network. Circles are disorders,
rectangles are disease genes.



The Human Disease Network
Goh et al. (2007)

A subset of the human disease network projection of the bipartite
graph. Each node corresponds to a distinct disorder.



The Disease Gene Network
Goh et al. (2007)

A subset of the disease gene network projection of the bipartite graph.
Each node is a gene.
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Figure: The rightmost graph represents the combination since both models imply
the same constraints for the joint distribution of (Y2,Y3).
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Figure: Here it is less obvious to define the combination and to represent the
combination graphically.
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Example
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◦ 2

◦ 3 ◦3
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◦
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◦ 4

Figure: There are no conditional independence relationships expressed by the two
graphs on the left. The graph on the right represents their combination.



General Setting

We can think of the previous examples in different contexts:

Different types of variables: discrete nodes, continuous and discrete
nodes;

Different types of graphs: for example DAGs.

In this talk, for simplicity the focus is only on Gaussian variables.
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Basic Notation

V is a set of variables.

YV , v ∈ V random variable taking values in Yv .

For A ⊆ V , YA = (Yv )v∈A with values in YA = ×v∈AYv .

For f distribution over V and A,B ⊂ V , fA denotes the marginal
distribution of YA and fB|A the conditional distribution of YB\A given
YA = yA.

F = {f } is the family of distributions over A ⊆ V .

F↓C are the induced marginal distributions over C ⊆ A.
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Set-up

Consider two sets of variables A and B , and two families F and G of
distributions for YA and YB , where A and B ⊆ V .

Ideally search for a joint family of distributions, H for YA∪B , such that

H↓A = F , H↓B = G.
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Combining Distributions

If f and g are consistent, i.e., fA∩B = gA∩B , their Markov combination
(Dawid and Lauritzen, 1993) is

f ? g =
f · g
gA∩B

.

If f and g are not consistent, but fA∩B << gA∩B , their right
composition (Jiroušek and Vejnarová, 2003) is

f . g = f · g
gA∩B

.

If gA∩B << fA∩B , their left composition (Jiroušek and Vejnarová, 2003) is

f / g =
f

fA∩B
· g .
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Restrictive Type of Combination

The lower Markov combination of F and G is

F ? G = {f ? g , f ∈ F , g ∈ G, f and g consistent} ,

where f ? g = f · g/gA∩B is the Markov combination of distributions f
and g .

The combination respects (F ? G)↓A ⊆ F , (F ? G)↓B ⊆ G.

If F and G are meta-consistent, i.e., F↓A∩B = G↓A∩B , this is the
meta-Markov combination F ? G of Dawid and Lauritzen (1993).
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Less Restrictive Type of Combination

The upper Markov combination of F and G is

F ? G = {f . g | f ∈ F , g ∈ G} ∪ {f / g | f ∈ F , g ∈ G}.

All marginal distributions of the two families are represented also in the
combined family.
Here we have

(F ? G)↓A ⊇ FG , (F ? G)↓B ⊇ GF ,

where FG = {f ∈ F | ∃g : fA∩B << gA∩B}.

If FG = F ,GF = G we say that the families are quasi-consistent.

It holds that F ? G ⊆ F ? G.
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Cuts and Equivalence of Combinations

Let F and G be two families of distributions for random variables YA and
YB . The following are equivalent:
(i) F and G are quasi-consistent and F ? G = F ? G.

(ii) (F ? G)↓A = F and (F ? G)↓B = G.

(iii) F and G are meta-consistent and YA∩B is a cut for F and G.

(iv) F and G are meta-consistent and YA∩B is a cut for F ? G.

Recall that YA∩B is a cut in F if F ∼ F↓A|(A∩B) ×F↓A∩B ,
(Barndorff-Nielsen, 1978).
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Maximal Extension of the Families

If we let
F? = (F ? G)↓A, G? = (F ? G)↓B ,

and
F?? = (F? ? G?)↓A, G?? = (F? ? G?)↓B ,

we have that
F ? G ⊆ F ? G ⊆ F?? ? G??,

Super Markov combination F ⊗ G of F and G as the meta-Markov
combination of the maximally extended families:

F ⊗ G = F?? ? G??.
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Summarising

Lower Markov combination (restrictive case)

F ? G =

{
f · g
fA∩B

, f ∈ F , g ∈ G, f and g consistent
}
.

Upper Markov combination (less restrictive case)

F ? G =

{
f · g
gA∩B

| f ∈ F , g ∈ G
}
∪
{

f · g
fA∩B

| f ∈ F , g ∈ G
}
.

Super Markov combination (maximal extension of the families)
F ⊗ G = F?? ? G?? also written as

F ⊗ G =
{
fA|A∩B · hA∩B · gB|A∩B , f ∈ F , h ∈ F ∪ G, g ∈ G

}
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Conditional Independence Assumption

All combinations use the conditional independence assumption
A⊥⊥B|(A ∩ B).

If A⊥⊥B|(A ∩ B) does not hold, then the separate analyses of A and
B can potentially be very misleading as the missing data in each case
typically will induce spurious correlations.

It may make sense to use this assumption and then consider the
distortions that this may induce.
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Can we relate meta-consistency to a property of the graphs?

Is there any context when the problem becomes very simple?

Difference between graphical and non-graphical combinations.
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Meta-consistency of Graphical Models

If two Gaussian graphical models are meta-consistent, the marginal
graphs over the variables in the intersection must be identical. The
converse is not generally true.

If the two dependence graphs are isomorphic then meta-consistency
is guaranteed.

Meta-consistency is related to but different from collapsibility of the
two dependence graphs onto A ∩ B .

In general, all constraints on the common variables must be
investigated.
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Conditions for Equivalence of Combinations

If the graphs are collapsible onto A ∩ B and the induced subgraphs on the
common variables are the same, then

F ? G = F ? G = F ? G = F ⊗ G.

Here the combination is graphical and its dependence graph is given by

G (F ∗ G) = G (F) ∪ G (G).
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Combinations of Graphical Models

The lower Markov combination is the family of distributions that
satisfies all induced constraints. These can be polynomial equality
relations (conditional independence), tetrad and pentad constraints,
and also inequality constraints (Drton et al., 2007).

The upper Markov combination combines all the marginal
distributions from one family with all the conditional distributions
from the other family.

The super Markov combination is the combination of all conditional
distributions from the two families with any marginal distributions on
the common variables.

We need to distinguish between graphical and non-graphical
combinations.
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Example - Graphical Combination
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◦ 3 ◦ 3

◦ 2

The lower Markov combination is
F ? G = F ? G =

{
Y ∼ N3(0,Σ),Σ−1 ∈ S+(GA),Σ{2,3} = Φ{2,3}

}
.

The upper and super Markov combination are identical and the
corresponding graph is a complete graph.
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The lower Markov combination is

F ? G = {Y ∼ N3(0,Ω), ω23ω11 = ω12ω13, ω23 = 0} ,

where Ω = {ωij}.
It is the union of the graphical model with vertex set {1, 2, 3} and edge
(1, 2) and the graphical model with vertex set {1, 2, 3} and edge (1, 3).
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The super Markov combination is
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f123 · g23

f23
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}
,

and they are both graphical combinations.
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Estimation

Present interest only in graphical cases.

Consider an approach that exploits all the available information and
converts the problem in a missing data one.

The available initial data define the complexity of the estimation
process (raw data vs derived quantities).
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Missing Data Approach
An example

◦1
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Figure 1: From left to right, families F , G, and F ? G.
yA = (y i

j ) with j = 1, 2, 3 and i = 1, · · · , nA observations from F .

yB = (y i
j ) with j = 2, 3 and i = 1, · · · , nB observations from G,

n = nA + nB .

1 2 3
F nA nA nA
G nB nB

Table: Missing pattern for the problem considered.
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EM Algorithm

The hypothetical complete data model has the form of a regular
exponential family with unknown canonical parameter K , concentration
matrix of the combination.

Apply standard EM algorithm as detailed for mixed graphical models by
Didelez and Pigeot (1998).

The partial imputation EM algorithm (Geng et al., 2000) would be more
efficient when dealing with high dimensional graphs and multiple
combinations.
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EM Algorithm

The sufficient statistics are given by

wjj =
n∑

i=1

(y i
j )2, j = 1, 2, 3 w1j =

n∑
i=1

y i
1y

i
j , j = 2, 3.

The maximum likelihood estimate for the complete data case is

K̂ = n

w11
[1,2] w12

[1,2] 0
w21
[1,2] w22

[1,2] 0
0 0 0

+ n

w11
[1,3] 0 w13

[1,3]
0 0 0

w31
[1,3] 0 w33

[1,3]

−
 n

w11
0 0

0 0 0
0 0 0

 ,

w ij
[A] is the ijth element in Ŵ−1

[A] , where W =
∑n

i=1 y i (y i )T .
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E-Step

Compute the expected values of the complete data sufficient statistics,
conditional on the observed data, using the current estimate of the
parameter.

At iteration (t), denote the current estimate of the parameter as
θ(t) = K (t). The E-step computes

w (t)
1j = E

(
n∑

i=1

Y i
1Y

i
j

∣∣∣Yobs , θ
(t)

)
,

w (t)
11 = E

(
n∑

i=1

(Y i
1)2
∣∣∣Yobs , θ

(t)

)
,

wjj = w (t)
jj = E

(
n∑

i=1

(Y i
j )2|Yobs , θ

(t)

)
.
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M-Step

The M-step computes K̂ (t+1), by updating the relevant quantities with the
values obtained in the E-step:

K̂ (t+1) = n

w11
[1,2]

(t) w12
[1,2]

(t) 0

w21
[1,2]

(t) w22
[1,2] 0

0 0 0

+ n

w11
[1,3]

(t) 0 w13
[1,3]

(t)

0 0 0
w31
[1,3]

(t) 0 w33
[1,3]

−
 n

w11(t)
0 0

0 0 0
0 0 0

 .

The algorithm performs the two steps until convergence, after having
specified an initial value K0 for K .



Direct Estimation

If the original graphs are both collapsible onto A ∩ B and the induced
subgraphs on the common variables are the same all the combinations
are identical.

It would make no difference whether we have the maximum
likelihood estimates from each of the experiments or the raw data.

We can directly combine the estimates of the single models and a
missing data approach is not required.
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Direct Estimation
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Figure: All combinations are identical to the combination on the right.

All the combinations are equivalent to

F ? G = {f ? g , f ∈ F , g ∈ G}.

The estimation of the combination is given by the combination of the
separate estimates, i.e., f̂ and ĝ .



Bayesian Approach

This part of the work is under development.

Specification of the prior distribution depends on the type of
combination. In general, hyper-Markov laws are needed.

MCMC is necessary for the estimation of the combined graphical
model.
Variational methods can be investigated in this case and also for the
previous context.
A comparative evaluation of the two approaches is also interesting.
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