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Aim of the Talk

1. Present an application of graphical (log-linear) models
in model-based meta-heuristics for optimization

2. Discuss new approaches to optimization and model
selectionbased on natural gradient
and linear regression

Outline

◾ Brief introduction to Model-Based Search (MBS)

◾ Why graphical models in such context?

◾ Main issues and open problems

◾ Fitness modelling and natural gradient

◾ Model selection and linear regression
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Model-Based Optimization

◾ Model-based Search (MBS) (Zlochin et al., 2004) is paradigm in
optimization based on the idea of finding the minimum by
identifying a proper sequence of densities in a statistical model

◾ Black-box context: the analytic formula of the function to be
optimized may be unknown

◾ Some examples of MBS (and related techniques)

◾ Evolutionary computation: EDAs (Larrañaga and Lozano, 2002), GAs
(Holland, 1975), ACO (Dorigo, 1992), ESs (Rechenberg, 1960), etc.

◾ Gradient descent: CMA-ES (Hansen and Ostermeier, 2001), NES
(Wierstra et al., 2008), SGD (Robbins and Monro, 1951)

◾ Boltzmann distribution and Gibbs sampler (Geman and Geman, 1984)

◾ Simulated Annealing and Boltzmann Machines (Aarts and Korst, 1989)

◾ The Cross-Entropy method (Rubinstein, 1997)

◾ LP relaxation in pseudo-Boolean optimization (Boros and Hammer, 2001)
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An Example of EDA: UMDA and OneMax

OneMax Feasible solution x = (x1, . . . , xn), xi ∈ {0,1}

Function to maximize f(x) = ∑n
i=1 xi

Statistical model p(x) = Πn
i=1pi(xi)
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Let P be a sample (multiset) of candidate solutions to the
optimization problem, and let p a probability distribution

The basic iteration of and EDA consists of
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A Unifying Perspective for MBS

◾ Given then original optimization problem minx∈Ω f(x), we
introduce the minimization of the stochastic relaxation
minp∈M Ep[f] (M., Matteucci and Pistone, 2011)

◾ We move the search to the space of probability distribution S

◾ Candidate optimal solutions for the original problem can be
obtained by sampling the solution of the relaxed problem

◾ Under proper choice ofM ⊂ S the two problems are equivalent

The relaxed problem can be solved in different ways, e.g, by

◾ Estimation of distribution (EDAs: Larrañaga and Lozano, 2002)

◾ Gradient descent (NES: Wierstra et al., 2008)

◾ Fitness modelling (DEUM framework: Shakya et al., 2005)
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Checklist for Model-based Algorithms

◾ a family of statistical model

◾ a model selection algorithm

◾ an estimation algorithm

◾ a sampling algorithm

→ Bayesian Networks

→ Search+score (BIC/MDL)

→ Estimate conditional prob.

→ Direct sampling

Almost all model-based algorithms employ graphical models,
since they provide nice factorizations for

the joint probability distribution
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EDAs for Discrete Optimization

◾ Independence model: UMDA (Mühlenbein and Paaß, 1996),
PBIL (Baluja, 1994), cGA (Harik, Lobo and Goldberg, 1997)

◾ Chain: MIMIC (De Bonet, Isbell and Viola, 1997)

◾ Trees: COMIT (Baluja and Davies (1997)

◾ Forests: BMDA (Pelikan and Mühlenbein, 1999)

◾ Clusters of variables: ECGA (Harik, 1999)

◾ Bayesian Networks: BOA (Pelikan, Goldberg and Cantú-Paz,
2000), EBNA (Etxeberria and Larranãga, 1999), LFDA
(Mühlenbein and Mahnig, 1999), hBOA (Pelikan, 2005)

◾ Markov Random Fields: MN-EDA (Santana, 2005), MOA
(Shakya and Santana, 2008)

For a review, see Hauschild and Pelikan (2011)
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Directed vs Undirected Graphical Models

Bayesian Networks

– Learning is hard

+ Estimation is easy

+ Sampling is easy
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Directed vs Undirected Graphical Models

Bayesian Networks

– Learning is hard

+ Estimation is easy

+ Sampling is easy

Markov Random Fields

– Learning is hard

∼ Estimation is not trivial

∼ Sampling is not trivial

State of the art EDAs employ BNs together with decision trees
hBOA (Pelikan, 2005)

We are interested in MRFs (log-linear models)
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Open Issues

◾ The choice ofM is crucial in MBS

◾ Critical points for Ep[f] imply convergence to local minima
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Open Issues

◾ The choice ofM is crucial in MBS

◾ Critical points for Ep[f] imply convergence to local minima

◾ Efficient methods in the high-dimensional setting
(number of variables 100-1K)
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The Exponential Family

◾ We choose models from the exponential family E

p(x; θ) = exp( k∑
i=1

θiTi(x) −ψ(θ))
◾ sufficient statistics T1(x), . . . , Tk(x)◾ natural parameters θ = (θ1, . . . , θk) ∈ Θ◾ log-partition function ψ(θ)
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The Exponential Family

◾ We choose models from the exponential family E

p(x; θ) = exp( k∑
i=1

θiTi(x) −ψ(θ))
◾ sufficient statistics T1(x), . . . , Tk(x)◾ natural parameters θ = (θ1, . . . , θk) ∈ Θ◾ log-partition function ψ(θ)

Two parameterizations play a fundamental role (Amari, 2001)

Raw parameters

ρ = (P(X = x))

Natural parameters

θ ∈ Θ

Expectation parameters

η = ∇ψ(θ) = Eθ[T (x)]
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12The Gibbs Distribution
(Hwang, 1980; Geman and Geman, 1984)

◾ Given q, the curve following ∇Ep[f] is an exponential family

p(x; θ) = qe−βf

Eq[e−βf ] , β > 0

◾ The set of distributions is not weakly closed

lim
β→0

p(x;β) = q
lim
β→∞

p(x;β) = pδ
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12The Gibbs Distribution
(Hwang, 1980; Geman and Geman, 1984)

◾ Given q, the curve following ∇Ep[f] is an exponential family

p(x; θ) = qe−βf

Eq[e−βf ] , β > 0

◾ The set of distributions is not weakly closed

lim
β→0

p(x;β) = q
lim
β→∞

p(x;β) = pδ
◾ Since ∇Eβ[f] = −Varβ(f) < 0, the expected value of f

decreases monotonically

Evaluating the partition function is computationally unfeasible
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Geometry of the Exponential Family

◾ A statistical model can be modeled as a manifold of distributions
by introducing an affine chart in p

◾ The tangent space in p is defined by Tp = {v ∶ Ep[v] = 0}
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Geometry of the Exponential Family

◾ A statistical model can be modeled as a manifold of distributions
by introducing an affine chart in p

◾ The tangent space in p is defined by Tp = {v ∶ Ep[v] = 0}
◾ Since ∇Eθ[f] = Covθ(f,T ), the steepest direction is f − Eθ[f]

◾ If f ∉ Tp, we take the projection f̂
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Geometry of the Exponential Family

◾ In case of a finite sample space X

Tθ = {v ∶ v = k∑
i=1

ai(Ti(x) −Eθ[Ti]), ai ∈ R}
and

f̂ =
k∑
i=1

âi(Ti(x) −Eθ[Ti])

◾ Since f − f̂ ⊥ Tθ follows that Covθ(f − f̂θ, T ) = 0 and

â =
∇Eθ[f]∇2ψ(θ) =

Covθ(f,T )
Covθ(Ti, Tj)

By taking projection of f onto Tp, we obtained the natural gradient,
i.e., the gradient evaluated w.r.t. the Fisher information metric
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Geometry of the Exponential Family

◾ If f ∉ Tp, the projection f̂ may vanish, and local minima appear
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Pseudo-Boolean Optimization

◾ We use the harmonic encoding {+1,−1} for binary variables

−10 = +1 − 11 = −1
◾ A pseudo-Boolean function f is a real-valued map

f(x) ∶ Ω = {+1,−1}n → R

◾ Any f can be expanded uniquely as square free polynomial

f(x) = ∑
α∈L

cαx
α,

by employing a multi-index notation, α = (α1, . . . ,αn) ∈ {0,1}n
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Pseudo-Boolean Optimization

◾ We use the harmonic encoding {+1,−1} for binary variables

−10 = +1 − 11 = −1
◾ A pseudo-Boolean function f is a real-valued map

f(x) ∶ Ω = {+1,−1}n → R

◾ Any f can be expanded uniquely as square free polynomial

f(x) = ∑
α∈L

cαx
α,

by employing a multi-index notation, α = (α1, . . . ,αn) ∈ {0,1}n
◾ Pseudo-Boolean functions appear in

◾ Statistical physics (spin-glass problems)

◾ Theoretical computer science (max sat)

◾ Machine learning (feature selection, clustering, ranking)

◾ Graph theory (max cut)
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Expected Fitness Landscape Analysis

Theorem

Consider the stochastic relaxation based on the exponential family E
(i) pθ in E is stationary if and only if Covθ(f,Xα) = 0 for all α in M
(ii) if f can be expressed as a linear combination of the sufficient statistics

of E , i.e., f ∈ Span{T1, . . . , Tk}
1. ∇Eθ[f] never vanishes
2. Eη[f] is a linear function in the η parameters
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Expected Fitness Landscape Analysis

Theorem

Consider the stochastic relaxation based on the exponential family E
(i) pθ in E is stationary if and only if Covθ(f,Xα) = 0 for all α in M
(ii) if f can be expressed as a linear combination of the sufficient statistics

of E , i.e., f ∈ Span{T1, . . . , Tk}
1. ∇Eθ[f] never vanishes
2. Eη[f] is a linear function in the η parameters

Theorem

If the main effects appear among the sufficient statistics of E , i.e., {Xi}ni=1 ⊂{Xα}α∈M , then there exists a sequence of distributions {p(x; θt)}t≥1 in E such
that limt→∞ p(x; θt) = q and Eq[f] =minf

Theorem: The Pringles® theorem

Any stationary point of Eθ[f] in E is a saddle point
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Stochastic Natural Gradient Descent

◾ The natural gradient w.r.t. the Fisher information metric is

∇̃Eθ[f] = ∇Eθ[f]I−1(θ)
◾ The natural gradient is invariant w.r.t. the parametrization and

has better convergence properties
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Stochastic Natural Gradient Descent

◾ The natural gradient w.r.t. the Fisher information metric is

∇̃Eθ[f] = ∇Eθ[f]I−1(θ)
◾ The natural gradient is invariant w.r.t. the parametrization and

has better convergence properties

◾ We can evaluate ∇̃Eθ[f] by estimating covariances, and
explicitly update the model parameters

θt+1 ∶= θt − γ∇̃Êθ[f]
Algorithm SNGD(P,γ)

1: Generate a sample P0 of size P
2: t ∶= 0 and θ0 ∶= 0
3: repeat
4: Evaluate empirical Cov(f,Xα) and Cov(Xα,Xβ) from Pt

5: θt+1 ∶= θt − γ∇̃Êθ[f]
6: Generate Pt+1 by sampling P points from pθt+1 with the Gibbs sampler
7: t ∶= t + 1
8: until convergence
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Stochastic Natural Gradient Descent

◾ In a single generation approach, we evaluate the gradient once

◾ Sample p(x; θ1) with the Gibbs sampler and a cooling scheme
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Stochastic Natural Gradient Descent

◾ In a single generation approach, we evaluate the gradient once

◾ Sample p(x; θ1) with the Gibbs sampler and a cooling scheme

Algorithm GIBBS SAMPLER(p, c,γ)

1: Randomly choose x = (x1, . . . , xn)
2: r ∶= 0
3: repeat
4: Set xtmp ∶= x
5: for i← 1 to n do
6: r ∶= r + 1
7: T ∶= 1/cr
8: Sample xi from pi(xi∣x/i; θi;T )
9: end for

10: until xtmp = x or T < γ
11: return x

◾ Such approach is successful if all interactions of f are captured
by the model, i.e., the Gibbs distribution is included in E

L. Malagò, Workshop on Graphical Models, The Fields Institute, 2012
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SNGD: Experimental Results
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L. Malagò, M. Matteucci, and G. Pistone. Stochastic natural gradient descent by estimation of empirical covariances. In
Evolutionary Computation (CEC), 2011 IEEE Congress on, pages 949 –956, june 2011.

L. Malagò, M. Matteucci, and G. Pistone. Optimization of pseudo-boolean functions by stochastic natural gradient descent.
In MIC 2011, 9th Metaheuristics International Conference, july 2011.
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Sparse Model Selection

◾ We apply '1-regularized methods for high-dimensional sparse
model selection (Ravikumar et al., 2010)
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Sparse Model Selection

◾ We apply '1-regularized methods for high-dimensional sparse
model selection (Ravikumar et al., 2010)

◾ Conditional probabilities in the exponential family

pi(xi∣x/i; θi) = 1

1 + exp (−2xi∑α∈Mi
θα/ixα/i)

◾ We reconstruct a sparse neighbourhood for each xi by solving n
different '1-penalized logistic regression problems

min
θi
{L(θi∣P) + λ∣∣θi∣∣1} , λ =K

√
logn

m
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22'1-constrained Model Selection:
Experimental Results

2D Spin Glass, n=64
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23
Markov Fitness Model

◾ In DEUM (Shakya et al., 2005), p are chosen to be proportional
to f

p(x) = f(x)
∑Ω f(x)
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Markov Fitness Model

◾ In DEUM (Shakya et al., 2005), p are chosen to be proportional
to f and p belongs to the exponential family

p(x) = f(x)
∑Ω f(x) p(x; θ) = exp{ ∑

α∈M

θαx
α − ψ(θ)} ,

which in particular is satisfied by

ln f(x) = ∑
α∈M

θαx
α,

◾ Parameters are obtained by solving a linear regression problem
by least squares

min
θ∈Rk

⎧⎪⎪⎨⎪⎪⎩
1

2
(ln f(x) − ∑

α∈M

θαx
α)2⎫⎪⎪⎬⎪⎪⎭
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24Linear Regression and Gradient Estimation
with Orthogonal Variables

◾ In DEUM a linear model for ln f is estimated

ln f(x) = ∑
α∈M

θαx
α

◾ In the uniform distribution p0, all Xα are orthogonal, thus
regression coefficients can be evaluated as

θ̂α =
⟨f,xα⟩
⟨xα, xα⟩ =

1

P
∑
Ω

fxα = E0[fxα] = cα
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◾ In DEUM a linear model for ln f is estimated

ln f(x) = ∑
α∈M

θαx
α

◾ In the uniform distribution p0, all Xα are orthogonal, thus
regression coefficients can be evaluated as

θ̂α =
⟨f,xα⟩
⟨xα, xα⟩ =

1

P
∑
Ω

fxα = E0[fxα] = cα
◾ In SND gradient components are estimated as

∂αEθ[f] = Covθ(f,Xα)
◾ In the uniform distribution p0, E0[Xα] = 0, so that and

Cov0(f,Xα) = E0(fXα) = cα
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25
DEUM, SGD and SNGD

At t = 0, in p0, E0[XαXβ] = 0, unless α = β

DEUM

ln f(x) = ∑
α∈M

θαx
α

θ1 ∶= −∇̃Ê0[ln f]
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At t = 0, in p0, E0[XαXβ] = 0, unless α = β

DEUM

ln f(x) = ∑
α∈M

θαx
α

θ1 ∶= −∇̃Ê0[ln f]

SGD

θ1 ∶= −γ∇Ê0[f]
f(x) = ∑

α∈M

θαx
α

(under Xα ⊥ Xβ)

DEUM makes a step in the direction of ∇̃E ln f(x), and
SNG estimates a linear model for f with orthogonal variables

For any p, SNGD solves f(x) = ∑α∈M θαx
α, θt+1 ∶= θt − γ∇̃Êθ[f]
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Implications for Model Selection

◾ Fitness estimation and gradient estimation are strongly
connected
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Implications for Model Selection

◾ Fitness estimation and gradient estimation are strongly
connected

◾ Gradient descent can be combined with model selection
methods from linear regression

◾ Forward stepwise regression

◾ LASSO/LAR

◾ Orthogonality of variables in pθ allows to test if ∇αEθ[f] ≠ 0
rather then ∇̃αEθ[f] ≠ 0 (speedup VS accuracy)

◾ Map {X}α∈M to a new set of variables Z, orthogonal in pθ, and
evaluate regular gradients for model selection
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