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Notation
@ Random variables: Xy, ..., X
@ pdf: f(X) =1(Xq,...,Xn)
@ g =logf
@ Indexset: J e N ={1,...,p}
@ Margin: X;
@ Multi-index: o = (o, ..., ap), o] =D q
@ Monomial: X® = X7 -+ - X,”
@ Differential:
Do ol ]
OXSL X

4733
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Ordinary moments and cumulants

Kk100 = H100

Koo = Ho10

kool = Ho10

K110 = M110 — H1004010

k101 = HM101 — MHO10M101

Ko11 = Mo11 — Mo10M001

K111 = pM111 — H100H011 — H010/4101 — 1104001 + 2/4100/010/4001



H100 = K100
Ho10 = Ko10
Kool = Kolo
H110 = K110 1+ K100K010
H101 = K101 T K010K101
Ho11 = ko1l + Ko10K001

H111 111 + K100K011 + K010K101 + K110K001 + 4100440104001
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Local moments and cumulants

© Take abox B(e) = [I7_,[& — &I,

© Multivariate Taylor expansion of the pdf, f, at (£1,&,...)

© Truncate and normalise the expansion over B(¢) (care needed)
© Compute moments and cumulants

©Q Lete—0

© Investigate the dominant terms

@ Result: square free cumulants dominate!



]
Theorems

Theorem (Local moments)

Let X in RP be an absolutely continuous random vector with density fy
which is p times differentiable in £ in RP. Let k in NP determine the
order of moment. Then, for|A| sufficiently small, X has local moment

mi — r(e,k)<D&f(X§) +0(62)>, )

p

p p
where r(e, k) := Kl T 1 I ezanda:= ) e
i—1

i—1, i—1, -1,
ki €2N ki €2N+1 ki €2N+1




Corollary (Local cumulants)

| o
ko= e x| — )] r(e qu)<7Dfxfé()§) + 0(62)>,

ren(k) j=1

where q; is a function of the partition 7 and defined as

Q; '_Ze, <VM €2N+l>

that is, ¢ is binary and holds ones corresponding to odd elements of
M- Furthermore,

» + p 1 P 1
r(e,m) = J’ s II (i) + 1 1:_1 (i) +2°
)€

i=1,

l/M (I)EZN I/M ( €2N+1
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Differential cumulants

Definition (Differential cumulant)

For an index vector k in NP, the differential cumulant in a in RP is
defined as

||

wg= Y e(m)(=1)" D a| - 1) ] m3, .
i=1

wel(k)
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Lemma (Differential cumulant)
For a differential cumulant in £ in RP of order k in NP it holds that

Kk = D%log(fx (€)),

p
where o 1= Z e; projects odd elements of k onto one even
i=1,
k,EZN—i—l
elements of k onto zero.
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Independence and conditional independence via
differential cumulants

Proposition (Independence in the bivariate case)
Let X inR?. Then X; L X, < «f; =0 forallxinR2

Proposition (Conditional independence of two random variables)
Let X in RP. Then

Xi L Xj|X_j <= kx =0 forallxinRP,

where
X—ij = (Xl, ceey Xi—la Xi+1, ceey Xj—la Xj+1, veey Xp)

andk = €i +ej7 (|7J) € {17'--7p}27 [ #J
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Multivariate conditional independence

Proposition (Multivariate conditional independence)

Given three index sets I, J, K which partition {1, ...,p}, let
S ={e +ejicljel} Then

X L X3|Xk < ki =0forallk € S and for all x in RP.




]
Hierarchical models

Definition
Given a simplicial complex S over an index set V' = {1,...,p} and an

absolutely continuous random vector X a hierarchical model for the
joint distribution function fy (x) takes the form:

fi(X)=expq > hy(x) ¢,
JinS

where hy : R — R and x; in R’ is the canonical projection of x in RP
onto the subspace associated with the index set J.

Exponential family hierarchical models: parameters which appear in a
linear way, (log-linear models)
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Hierarchical models via differential cumulants

Theorem

Given a simplicial complex S on an index set N, a model g is
hierarchical, based on S if and only if all differential cumulants on the
complementary complex vanish everywhere, that is

kg =0, forall x in RP and for all K in S.




Monomial ideals

@ Anideal: (g(x),...,9gm(x)) is the set of all polynomials:

$1()g(X) + - - - Sm(X)gm(X)

@ A monomial ideal: all the g;(x) are monomials. Diagram

5

X3S X1X3
X3 X1X5
X3 X1x3
X2 X1x2
X2  X1X2
1 X1

@ I < X1Xy, X3X2 X? >

X1

X X3
Xy X
XiX;
XiX;
X1 X2

4
X1
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Stanley-Reisner ideal and duality

@ Let S be a hierarchical model simplicial complex, eg cliques:
{13, 23} (conditional independence).

@ Take all facets NOT in S: {12,123}
@ Construct the corresponding monomial ideal (Stanley-Reisner)

ls =< X1Xo >
@ Duality (Seidenberg nullstellensatz)
DH0g(xq, X2, X3) «—< X% >

@ One-one correspondence

hierarchical models «— square free monomial ideals



Examples
Cl {13,23} ——< X1X2 >
3-cycle {12,23,13} «——< X1XoX3 >

4-cycle {12,23,34,14} «—< X1X3, X2Xq >

decomp {123,234,345} «—< X1X4,X1X5,X2X5 >



Decomposability

Definition

Let V ={1,...,p} be the vertex set of a graph G and |, J vertex sets
such that | UJ = N. Then G is decomposable if and only if | N J is
complete and | forms a maximal clique or the subgraph based on | is
decomposable and similarly for J.
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Example of decomposability
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Decomposability and marginalisation

Important point: the decomposition of f,345 at stage 2 requires a
marginalisation.

[Tyec fa(Xs)
fV(XV) = H JECf Xe )’
Kes K( K)
Two stages
¢ ~ f123f2345
R
¢ _ f123f234f345
12345 — W
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Minimal free resolution theorem

LCM for monomial ideals:

(

X1X2X3 A XxX3X5 = X1 XoX3X5

@ Resolution: monomial maps between successive “levels”, forming
an exact sequence (see alg top)

Minimal free resolution: maps have minimal rank
Length of MFR: projective dimension
Linear resolution: all matrices in the resolution have linear terms

¢ 6 6 ¢

2-linear: linear and every generator of Ig is of degree 2 (simple
interactions)
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Alexander duality

@ Take the model simplicial complex S.

@ Construct the S-R ideal I

@ The Alexander dual (in monomial form) is all complements of

terms in Ig. eg if n = 5 the complement of X;X3Xs5 IS X2X4
Example:
S = {123,234}
Non-faces:
{14,124,134,1234}

Complements:
{0,2,3,23}



]
Dirac’s Theorem

For a model based on a graph G the following are equivalent
@ G is chordal
@ |5 has a 2-linear resolution
© The projective dimension of Ig- is 1.
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Counter example

Model, S: {123,124,134,234, 235,15}
Stanley-Reisner ideal, Is: (45.125,135,1234)

0—S—cS*—gS*—,S—0
A = [45,125,135,1234]

0 -12 -13 -123
3 4 0 0
-2 0 4 0
0 0 0 5

B =

C=—-[-4,4-20]"
AB =0, BC=0

Not 2-linear = not decomposable



Ferrer ideals

6

7

8

9

a s wN Pk

X1Xe X1X7 X1Xg
XoXg XoX7
X3Xe X3X7

X4Xe
X5Xg

8

a b wNPE

XaX7
X5X7

X2Xg
X3Xg
X4Xg
X5Xg

X1Xg
X2Xg
X3Xg
X4Xg
X5Xg
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@ Ferreris 2-linear

@ Take Ferrer as the Stanley-Reisner ideal |s

@ The model S is decomposable

@ Construction: work down the rows of the complementary table.
@ Max cligues for the example

{123459, 234589, 34589, 45789, 5789}

Interpretation in statistics?



Network ideals

el

I nput 1

Cutideal: ls =< X1X4, XoX5, X1 X3X5, XoX3S4 >
Path ideal: ls+ < X1Xp,X4X5, X1 X3X5, X2, X3X5 >
Alexander duality: ls« = Is

3

e2

4 Output

Extend to “all terminal” reliability: generators (for “paths”) are all

minimal spanning trees. Cuts are multipartite graphs.
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Persistent homology constructions

@ Simplicial complex depends on the centres of the sphere and the
radius

@ Nerve of the cover has the same topology as cover (Borsuk)

@ Delauney complex N nerve, has same topology (Naiman and W)

@ Different metrics, different types of cover

@ Building models using persistent homology ideas



Polynomials and Artinian closure

Lemma
Impose additional differential conditions of the form

ni

X

g(x)=0, foral1<i<pandneNP (2)

the h-functions in the corresponding hierarchical model are
polynomials, in which the degree of x; does not exceed
ni—1, foralll <i<p.

@ Setall D*g = 0 with |a| = 3, gives quadratic. Add a NND
conditions gives Gaussian
@ Setall X
0
—~— ag=0
8xizg
gives MEC: multivariate exponential class.
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More general differential closure?
@ How do we deal with other non-polynomials models?
@ Are there any interesting continuous exponential family graphical

models outside: exponential and Gaussian?
@ Yes: eg multivariate von Mises:

f = exp(h-functions)
h-functions are terms like
cos(x),sin(2x),cos(2x +y),sin(x +Y), ....

But cos and sin satisfy differential equations
Conclusion: new classes of distributions
f = exp(Weyl, D-modules ....)

Parameters appear naturally as constants of integration
@ Big problem: closed form for normalising constant
(partition/potential function). Takayama et al.
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Shellability

Many ideal properties for Ig need to be investigated for their
implications for the model S. Shellability is one. Hibbi and Herzog
(2011).

@ Basic idea: we can build up a complex by adding cliques, of the
same max dimension in a special order

@ The “join” has one less dimension, but need not be a simplex
@ Weaker than decomposability

@ But has some decomposability hidden inside

@ Can be generalised

@ Related to other properties: Cohen-Macauley, projective
dimension, Krull dimension ....
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Further work

Testing the cumulant condition: DB PhD theseis.
Connect decomposability to ideal properties

The key construction is the MFR: make more use of it
Betti numbers: ordinary, graded, multigraded

Building models by “growing” simplicial complexes
Interpretation of “interactions”
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