Hierarchical models and monomial ideals

Daniel Bruynooghe and Henry Wynn

London School of Economics H.Wynn@lse.ac.uk

Fields Institute, April 2012

Summary diagram

Local cumulants and monomial ideals

- Notation
- log f and local cumulants
- Independence and conditional independence
- Hierarchical models
- The duality with monomial ideals
- Some "new" examples

Notation

- Random variables: X₁,..., X_p
- pdf: $f(X) = f(X_1, ..., X_n)$
- $g = \log f$
- Index set: $J \in N = \{1, ..., p\}$
- Margin: X_J
- Multi-index: $\alpha = (\alpha_1, \dots, \alpha_p), |\alpha| = \sum \alpha_i$
- Monomial: $\mathbf{x}^{\alpha} = \mathbf{x}_{1}^{\alpha_{1}} \cdots \mathbf{x}_{p}^{\alpha_{p}}$
- Differential:

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots x_p^{\alpha_p}}$$

Ordinary moments and cumulants

```
\kappa_{100} = \mu_{100} 

\kappa_{010} = \mu_{010} 

\kappa_{001} = \mu_{010} 

\kappa_{110} = \mu_{110} - \mu_{100}\mu_{010} 

\kappa_{101} = \mu_{101} - \mu_{010}\mu_{101} 

\kappa_{011} = \mu_{011} - \mu_{010}\mu_{001} 

\kappa_{111} = \mu_{111} - \mu_{100}\mu_{011} - \mu_{010}\mu_{101} - \mu_{110}\mu_{001} + 2\mu_{100}\mu_{010}\mu_{001}
```

```
\mu_{100} = \kappa_{100}
\mu_{010} = \kappa_{010}
\mu_{001} = \kappa_{010}
\mu_{110} = \kappa_{110} + \kappa_{100}\kappa_{010}
\mu_{101} = \kappa_{101} + \kappa_{010}\kappa_{101}
\mu_{011} = \kappa_{011} + \kappa_{010}\kappa_{001}
\mu_{111} = \mu_{111} + \kappa_{100}\kappa_{011} + \kappa_{010}\kappa_{101} + \kappa_{110}\kappa_{001} + \mu_{100}\mu_{010}\mu_{001}
```

Local moments and cumulants

- ① Take a box $B(\epsilon) = \prod_{i=1}^{P} [\xi_i \frac{\epsilon}{2}],$
- ② Multivariate Taylor expansion of the pdf, f, at $(\xi_1, \xi_2, ...)$
- **3** Truncate and normalise the expansion over $B(\epsilon)$ (care needed)
- Compute moments and cumulants
- Investigate the dominant terms
- Result: square free cumulants dominate!

Theorems

Theorem (Local moments)

Let X in \mathbb{R}^p be an absolutely continuous random vector with density f_X which is p times differentiable in ξ in \mathbb{R}^p . Let k in \mathbb{N}^p determine the order of moment. Then, for |A| sufficiently small, X has local moment

$$m_k^A = r(\epsilon, k) \left(\frac{D^{\alpha} f_X(\xi)}{f_X(\xi)} + O(\epsilon^2) \right),$$
 (1)

$$\textit{where } r(\epsilon, \textit{k}) := \epsilon^{\parallel \textit{k} \parallel_1^+} \prod_{\substack{i=1,\\k_i \in 2\mathbb{N}}}^p \tfrac{1}{k_i + 1} \prod_{\substack{i=1,\\k_i \in 2\mathbb{N} + 1}}^p \tfrac{1}{k_i + 2} \textit{ and } \alpha := \sum_{\substack{i=1,\\k_i \in 2\mathbb{N} + 1}}^p e_i.$$

Corollary (Local cumulants)

$$\kappa_k^A = \sum_{\pi \in \Pi(k)} c(\pi) (-1)^{(|\pi|-1)} (|\pi|-1)! \prod_{j=1}^{|\pi|} r(\epsilon, \nu_{M_j}) \left(\frac{D^{\alpha_j} f_X(\xi)}{f_X(\xi)} + O(\epsilon^2) \right),$$

where α_i is a function of the partition π and defined as

$$\alpha_j := \sum_{i=1}^p \mathbf{e}_i \mathbf{1} \bigg(\nu_{M_j}(i) \in \mathbf{2} \mathbb{N} + 1 \bigg),$$

that is, α_j is binary and holds ones corresponding to odd elements of ν_{M_i} . Furthermore,

$$r(\epsilon, \nu_{M_j}) := \epsilon^{\left\|\nu_{M_j}\right\|_1^+} \prod_{\substack{i=1, \\ \nu_{M_j}(i) \in 2\mathbb{N}}}^{p} \frac{1}{\nu_{M_j}(i) + 1} \prod_{\substack{i=1, \\ \nu_{M_j}(i) \in 2\mathbb{N} + 1}}^{p} \frac{1}{\nu_{M_j}(i) + 2}.$$

(LSE) 9/33

Differential cumulants

Definition (Differential cumulant)

For an index vector k in \mathbb{N}^p , the differential cumulant in a in \mathbb{R}^p is defined as

$$\kappa_k^{m{a}} := \sum_{\pi \in \Pi(k)} c(\pi) (-1)^{(|\pi|-1)} (|\pi|-1)! \prod_{i=1}^{|\pi|} m_{
u_{M_i}}^{m{a}}.$$

Lemma (Differential cumulant)

For a differential cumulant in ξ in \mathbb{R}^p of order k in \mathbb{N}^p it holds that

$$\kappa_k^{\xi} = D^{\alpha} \log(f_X(\xi)),$$

where $\alpha := \sum_{\substack{i=1,\\k \in 2\mathbb{N} \perp 1}}^{r} \mathbf{e}_i$ projects odd elements of k onto one even

elements of k onto zero.

Independence and conditional independence via differential cumulants

Proposition (Independence in the bivariate case)

Let
$$X$$
 in \mathbb{R}^2 . Then $X_1 \perp X_2 \iff \kappa_{11}^X = 0$ for all x in \mathbb{R}^2 .

Proposition (Conditional independence of two random variables)

Let X in \mathbb{R}^p . Then

$$X_i \perp \!\!\! \perp X_j | X_{-ij} \iff \kappa_k^{x} = 0 \quad \text{ for all } x \text{ in } \mathbb{R}^p,$$

where

$$X_{-ij} := (X_1, ..., X_{i-1}, X_{i+1}, ..., X_{j-1}, X_{j+1}, ..., X_p)$$

and
$$k = e_i + e_j$$
, $(i,j) \in \{1,...,p\}^2$, $i \neq j$.

Multivariate conditional independence

Proposition (Multivariate conditional independence)

Given three index sets I, J, K which partition $\{1, ..., p\}$, let $S = \{e_i + e_i, i \in I, j \in J\}$. Then

$$X_l \perp X_J | X_K \iff \kappa_k^{\mathsf{X}} = 0 \text{ for all } k \in \mathsf{S} \text{ and for all } \mathsf{x} \text{ in } \mathbb{R}^p.$$

Hierarchical models

Definition

Given a simplicial complex S over an index set $\mathcal{N} = \{1, \dots, p\}$ and an absolutely continuous random vector X a hierarchical model for the joint distribution function $f_X(x)$ takes the form:

$$f_X(x) = \exp\left\{\sum_{J \text{ in } S} h_J(x_J)\right\},$$

where $h_J: \mathbb{R}^J \longrightarrow \mathbb{R}$ and x_J in \mathbb{R}^J is the canonical projection of x in \mathbb{R}^p onto the subspace associated with the index set J.

Exponential family hierarchical models: parameters which appear in a linear way, (log-linear models)

Hierarchical models via differential cumulants

Theorem

Given a simplicial complex S on an index set N, a model g is hierarchical, based on S if and only if all differential cumulants on the complementary complex vanish everywhere, that is

 $\kappa_K^X = 0$, for all x in \mathbb{R}^p and for all K in \bar{S} .

Monomial ideals

• An ideal: $\langle g(x), \dots, g_m(x) \rangle$ is the set of all polynomials:

$$s_1(x)g(x)+\cdots s_m(x)g_m(x)$$

• A monomial ideal: all the $g_i(x)$ are monomials. Diagram

ullet : $< x_1 x_2^4, x_1^3 x_2^2, x_1^5 >$

Stanley-Reisner ideal and duality

- Let S be a hierarchical model simplicial complex, eg cliques: $\{13,23\}$ (conditional independence).
- Take all facets NOT in S: {12, 123}
- Construct the corresponding monomial ideal (Stanley-Reisner)

$$I_{\mathcal{S}} = \langle x_1 x_2 \rangle$$

Duality (Seidenberg nullstellensatz)

$$D^{110}g(x_1,x_2,x_3) \longleftrightarrow < x_1x_2 >$$

One-one correspondence

hierarchical models \longleftrightarrow square free monomial ideals

Examples

CI
$$\{13,23\} \longleftrightarrow < x_1x_2 >$$
3-cycle $\{12,23,13\} \longleftrightarrow < x_1x_2x_3 >$
4-cycle $\{12,23,34,14\} \longleftrightarrow < x_1x_3, x_2x_4 >$
decomp $\{123,234,345\} \longleftrightarrow < x_1x_4, x_1x_5, x_2x_5 >$

Decomposability

Definition

Let $\mathcal{N} = \{1, \dots, p\}$ be the vertex set of a graph \mathcal{G} and I, J vertex sets such that $I \cup J = \mathcal{N}$. Then \mathcal{G} is decomposable if and only if $I \cap J$ is complete and I forms a maximal clique or the subgraph based on I is decomposable and similarly for J.

Example of decomposability

Decomposability and marginalisation

Important point: the decomposition of f_{2345} at stage 2 requires a marginalisation.

$$f_V(x_V) = \frac{\prod_{J \in C} f_J(x_J)}{\prod_{K \in S} f_K(X_K)},$$

Two stages

$$f_{12345} = \frac{f_{123}f_{2345}}{f_{23}}$$
$$f_{123}f_{234}f_{345}$$

$$f_{12345} = \frac{f_{123}f_{234}f_{345}}{f_{23}f_{34}}.$$

Minimal free resolution theorem

LCM for monomial ideals:

$$x_1x_2x_3 \wedge x_xx_3x_5 = x_1x_2x_3x_5$$

- Resolution: monomial maps between successive "levels", forming an exact sequence (see alg top)
- Minimal free resolution: maps have minimal rank
- Length of MFR: projective dimension
- Linear resolution: all matrices in the resolution have linear terms
- 2-linear: linear and every generator of I_S is of degree 2 (simple interactions)

Alexander duality

- Take the model simplicial complex S.
- Construct the S-R ideal I_S
- The Alexander dual (in monomial form) is all complements of terms in I_S . eg if n = 5 the complement of $x_1x_3x_5$ is x_2x_4

Example:

$$S = \{123, 234\}$$

Non-faces:

Complements:

$$\{\emptyset, 2, 3, 23\}$$

Dirac's Theorem

For a model based on a graph G the following are equivalent

- G is chordal
- I_S has a 2-linear resolution
- **1** The projective dimension of I_{S^*} is 1.

Counter example

Model, S: {123, 124, 134, 234, 235, 15}

Stanley-Reisner ideal, I_S : $\langle 45.125, 135, 1234 \rangle$

$$0 \longrightarrow S \longrightarrow_C S^4 \longrightarrow_B S^4 \longrightarrow_A S \longrightarrow 0$$

$$A = [45, 125, 135, 1234]$$

$$B = \left(\begin{array}{cccc} 0 & -12 & -13 & -123 \\ 3 & 4 & 0 & 0 \\ -2 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 \end{array}\right)$$

$$C = -[-4, 4, -2, 0]^T$$

$$AB = 0$$
, $BC = 0$

Not 2-linear ⇒ not decomposable

Ferrer ideals

	6	7	7	8	9
1	<i>x</i> ₁ <i>x</i> ₆	<i>X</i> ₁	<i>X</i> ₇ <i>X</i> ₁	<i>X</i> ₈	
2	<i>x</i> ₂ <i>x</i> ₆	X 2	X 7		
3	<i>X</i> ₃ <i>X</i> ₆	X 3	<i>X</i> ₇		
4	<i>X</i> ₄ <i>X</i> ₆				
5	<i>x</i> ₅ <i>x</i> ₆				
	6	7	8	g)
1				<i>X</i> ₁ .	X 9
2			<i>x</i> ₂ <i>x</i> ₈	X 2.	X 9
3			<i>X</i> ₃ <i>X</i> ₈	X 3.	X 9
4	х	4 <i>X</i> 7	<i>x</i> ₄ <i>x</i> ₈	X_4	X 9
5	х	5 <i>X</i> 7	<i>X</i> 5 <i>X</i> 8	X 5.	X 9

- Ferrer is 2-linear
- Take Ferrer as the Stanley-Reisner ideal I_S
- The model S is decomposable
- Construction: work down the rows of the complementary table.
- Max cliques for the example

 $\{123459, 234589, 34589, 45789, 5789\}$

Interpretation in statistics?

Network ideals

Cut ideal: $I_S = \langle x_1 x_4, x_2 x_5, x_1 x_3 x_5, x_2 x_3 s_4 \rangle$

Path ideal: $I_{S^*} < x_1 x_2, x_4 x_5, x_1 x_3 x_5, x_2, x_3 x_5 >$

Alexander duality: $I_{S^*} = \bar{I}_S$

Extend to "all terminal" reliability: generators (for "paths") are all minimal spanning trees. Cuts are multipartite graphs.

Persistent homology constructions

- Simplicial complex depends on the centres of the sphere and the radius
- Nerve of the cover has the same topology as cover (Borsuk)
- Delauney complex ∩ nerve, has same topology (Naiman and W)
- Different metrics, different types of cover
- Building models using persistent homology ideas

(LSE) 29/33

Polynomials and Artinian closure

Lemma

Impose additional differential conditions of the form

$$\frac{\partial^{n_i}}{\partial x_i^{n_i}} g(x) = 0, \text{ for all } 1 \le i \le p \text{ and } n \in \mathbb{N}^p$$
 (2)

the h-functions in the corresponding hierarchical model are polynomials, in which the degree of x_i does not exceed $n_i - 1$, for all $1 \le i \le p$.

- Set all $D^{\alpha}g = 0$ with $|\alpha| = 3$, gives quadratic. Add a NND conditions gives Gaussian
- Set all

$$\frac{\partial^2}{\partial x_i^2}g=0$$

gives MEC: multivariate exponential class.

・ 4回 > 4 豆 > 4 豆 > 9 Q (*)

More general differential closure?

- How do we deal with other non-polynomials models?
- Are there any interesting continuous exponential family graphical models outside: exponential and Gaussian?
- Yes: eg multivariate von Mises:

$$f = \exp(h\text{-functions})$$

h-functions are terms like

$$cos(x)$$
, $sin(2x)$, $cos(2x + y)$, $sin(x + y)$,

But cos and sin satisfy differential equations Conclusion: new classes of distributions

$$f = \exp(\text{Weyl}, \text{ D-modules }....)$$

Parameters appear naturally as constants of integration

 Big problem: closed form for normalising constant (partition/potential function). Takayama et al.

(LSE) 31/33

Shellability

Many ideal properties for I_S need to be investigated for their implications for the model S. Shellability is one. Hibbi and Herzog (2011).

- Basic idea: we can build up a complex by adding cliques, of the same max dimension in a special order
- The "join" has one less dimension, but need not be a simplex
- Weaker than decomposability
- But has some decomposability hidden inside
- Can be generalised
- Related to other properties: Cohen-Macauley, projective dimension, Krull dimension

Further work

- Testing the cumulant condition: DB PhD theseis.
- Connect decomposability to ideal properties
- The key construction is the MFR: make more use of it
- Betti numbers: ordinary, graded, multigraded
- Building models by "growing" simplicial complexes
- Interpretation of "interactions"