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Set-up for sequences of regressions in vector variables YaYb . . .
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Main goal: understanding development with data from

– cohort studies, multi-wave panel data

– studies with randomized, sequential interventions

– cross-sectional and even retrospective studies
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General motivation

• Trying to understand short- and long-term effects of risks or of

interventions is motivating empirical research in many fields of

science

• For this, the main purpose of statistical planning, analysis and

interpretation is to capture and use potential data generating

processes and to trace pathways of dependence

• Sequences of multivariate or univariate regressions, simplified by

independences, provide a flexible framework; joint responses may

be discrete, continuous or be mixed of both types

3



A regression graph, GN
reg

, is traditionally the focus of interest

GN
reg

is a chain graph defined by node set N and three types of

edge sets E≺ , E , and E

It has

– a split of N = (u, v) with sequences of

– response nodes coupled as ◦ ◦ in u and

– context nodes coupled as ◦ ◦ in v

– a unique set of the concurrent nodes in gj for j = 1, . . . , J

– in each compatible ordering of gj , arrows, ◦≺ ◦, never point to

g>j = gj+1 ∪ gj+2, . . . ,∪gJ
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Example for a refined sets of concurrent nodes in gj obtained by

statistical analyses after a first ordering into five blocks

within a set of concurrent nodes, gj , each node can be reached via at

least one undirected path, no order is implied by stacked boxes
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Example continued: deleting all arrows gives uniquely the sets of

concurrent responses and concurrent context variables, the chain

components gj
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A joint density fN is said to be generated over GN
reg

if it has the basic factorizations with regressions fgj |g>j
as

fN = fu|vfv with fu|v =
∏

j∈u fgj |g>j
and fv =

∏

j∈v fgj

and satisfies the independences implied for each missing edge

For i, k a node pair and c ⊂ N \ {i, k}, we have in general

i ⊥⊥ k|c ⇐⇒ (fi|kc = fi|c) ⇐⇒ fik|c = (fi|cfk|c)
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For tracing pathways of dependence, the variable pairs needed to

generate fN are instead the focus of interest and

the substantive context determines which variable pairs are

modeled by a conditional independence and which variable pairs are

taken to be dependent

Suppose one regressor is a risk factor for a response, then the

prevention of the risk is generally judged to be of quite different

importance if, for instance, the response is

– the occurrence of a common cold

– the infection with an HIV virus or

– an accident in a nuclear plant
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We write i ⋔⋔⋔ k|c for Yi, Yk conditionally dependent given Yc for

some c ⊂ N \ {i, k}

A graph is edge-minimal for a distribution generated over it, if every

missing edge in the graph corresponds to a conditional independence

statement and every edge present to a dependence statement

A dependent variable pair Yi, Yk is one needed in the generating

process of fN and a family of densities fN generated over an

edge-minimal graph changes if any one edge is removed from the

graph
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Defining dependences and independences for an edge-minimal GN
reg

Definition 1

An edge-minimal regression graph with N = (u, v) and g1 < · · · < gJ

specifies a generating process for fN , where

i k : i ⋔ k|g>j for i, k concurrent response nodes in gj of u

i≺ k : i ⋔ k|g>j \ {k} for response i in gj of u

and explanatory k in g>j

i k : i ⋔ k|v \ {i, k} for i, k concurrent context nodes in gj of v

define edges present in GN
reg

define edges missing in GN
reg

when the dependence sign ⋔ is replaced by ⊥⊥
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Thus, for an edge-minimal GN
reg

– one fixed ordering of gj is assumed, so that the density of variables

in gJ is generated first,

the one of gJ−1 given gJ next,

up to the density of g1 given g>1

– the graph implies for each variable pair either conditional dependence

or independence given the same type of conditioning set

– for each node i of gj in u, nodes in

g>j = gj+1 ∪ gj+2, . . . , gJ−1 ∪ gJ are in the past of gj
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Requirements for two results on the independence structure of GN
reg

Let a, b, c, d denote disjoint subsets of N where only d may be

empty and let any joint independence b ⊥⊥ ac|d have

three equivalent decompositions as

(i) (b ⊥⊥ a|cd and b ⊥⊥ c|d)

(ii) (b ⊥⊥ a|d and b ⊥⊥ c|d)

(iii) (b ⊥⊥ a|cd and b ⊥⊥ c|ad)

then (i) named contraction, holds for all probability distributions

(ii) combines decomposition and composition, holds in a regression when there

is also a main-effect for every higher-order interactive or nonlinear dependence

(iii) combines weak union and intersection, holds for all positive distributions
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Given the three equivalent decompositions of any joint dependence,

active paths in GN
reg

can be expressed in terms of anterior paths

An anterior ik-path is a descendant-ancestor iq-path with a

context-nodes qk-path attached to it (or any subpath)

i ≺

ancestors of i
︷ ︸︸ ︷

◦≺ ◦, . . . , ◦≺ q ◦, . . . , ◦ k
︸ ︷︷ ︸

anteriors of i

Let {a, b, c,m} partition N , where c denotes a conditioning set of

interest for a, b and m the set of nodes to be ignored

A path in GN
reg

is active given c if of its inner nodes, every collision

node is in c ∪ antc and every transmitting node is in m
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Lemma 1

Global Markov property of GN
reg

(Sadeghi, 2009) GN
reg

implies

a ⊥⊥ b|c if and only if there is no active path in GN
reg

between a and

b given c

Lemma 2

Equivalence of the pairwise and the global Markov property

(Sadeghi and Lauritzen, 2012) The independence structure of

GN
reg

is equivalently defined by its lists of the three types of missing

edges and by its global Markov property.
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Two-edge subgraphs induced by three nodes in GN
reg

, named Vs

There are just two basic types of Vs in GN
reg

collision Vs:

i ◦≺ k, i ≻◦≺ k, i ◦ k,

and transmitting Vs:

i≺ ◦≺ k, i≺ ◦ k, i ◦ k, i≺ ◦ ≻k, i≺ ◦ k
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Lemma 3

Markov equivalence (Wermuth and Sadeghi, 2012) Two regression

graphs with the same skeleton are Markov equivalent if and only if

their sets of collision Vs are identical

Lemma 4

The conditioning set of any independence statement implied by

GN
reg

for the endpoints of any of its Vs, includes the inner node if it is

a transmitting V and excludes the inner node if it is collision V
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To make Vs dependence-inducing, we take an edge-minimal

regression graph for fN , assume the three equivalent decompositions

of a joint dependence and require in addition singleton transitivity

Singleton transitivity. For i, h, k distinct nodes and d ⊆ N \ {i, h, k}

(i ⊥⊥ k|d and i ⊥⊥ k|hd) =⇒ (i ⊥⊥ h|d or k ⊥⊥ h|d)

Thus, for a conditional independence of Yi, Yk given Yd and given

Yh, Yd to hold both, there has to be at least one additional

independence given Yc involving Yh

An edge-minimal GN
reg

forms a dependence base for fN , generated over it,

if singleton transitivity holds (always for fgj |g>j
, fg>j

a cut for all j)
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Proposition 1

Dependence inducing Vs. For (i, o, k) any V of a dependence

base GN
reg

and each c ⊆ N \ {i, k, o} such that this regression

graph implies one of i ⊥⊥ k|c or i ⊥⊥ k|oc, the following two

equivalent statements hold:

− (i, o, k) forms a collision V ⇐⇒ (i ⊥⊥ k|c =⇒ i ⋔ k|oc)

− (i, o, k) forms a transmitting V ⇐⇒ (i ⊥⊥ k|oc =⇒ i ⋔ k|c)

Thus, in a dependence base GN
reg

, conditioning on the inner node of

a collision V and marginalizing over the inner node of transmitting V is

dependence-inducing for the endpoints of the V given any appropriate c
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Definition 2

Traceable regressions. For {a, b, c, d} partitioning N , we say

fN results from traceable regressions if

1. it could have been generated over a dependence base regression

graph, GN
reg

,

2. it has the three equivalent decompositions of the joint

independence b ⊥⊥ ac|d

3. dependence-inducing V’s of GN
reg

are also dependence-inducing

for fN

Thus, traceable regression behave like regular Gaussian fa milies

generated over an edge-minimal GN
reg
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Next goal:

Obtaining a matrix criterion to decide whether a dependence base

GN
reg

implies α ⊥⊥ β|c or α ⋔ β|c for partitioning

We use edge matrix representation of GN
reg

: adjacency matrices

with ones added along the diagonal so that sums of products of

submatrices become well-defined

First task:

Given N = (u, v) and the edge matrices of GN
reg

for fN = fu|vfv

find the implied edge-matrices for another split N = (a, b) with

a = α ∪ m, b = β ∪ c and GN−a|b
reg

for fN = fa|bfb having

multivariate regression of Ya on Yb and a concentration graph for Yb
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Regression graphs have three types of edge sets, E≺ , E , and E

The edge matrix components of GN
reg

are a dN × dN upper

block-triangular matrix HNN = (Hik) such that

Hik =

{

1 if and only if i≺ k or i k in GN
reg

or i = k,

0 otherwise,

and a du × du symmetric matrix Wuu = (Wik) such that

Wik =

{

1 if and only if i k in GN
reg

or i = k,

0 otherwise,

where, E corresponds to Wuu, E to Hvv, and E≺ to HuN

(Wuv = 0, Wvu = 0, Wvv = Hvv)
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Example

For a Gaussian family in a mean-centered YN generated over

GN
reg

with just two concurrent response sets a, b, the parameter

matrices are for

HNNYN = εN , cov(εN) = WNN

HNN =







Iaa−Πa|b.v−Πa|v.b

0ba Ibb −Πb|v

0va 0vb Σvv.ab







WNN =







Σaa|bv 0ab 0av

0ba Σbb|v 0bv

0va 0vb Σvv.ab







where the Yule-Cochran notation is used: Πa|bv = (Πa|b.v Πa|v.b);

edge matrices HNN , WNN implicitly define such Gaussian families
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Partial closure

The edge matrix calculus of Wermuth, Wiedenbeck and Cox (2006)

uses partial closure, denoted by zera(F), which operates on all

nodes i in a ⊆ N of a symmetric edge matrix F

After a reordering to have node i in position (1,1) of F̃ and b = N \ i

zeri F̃ = In[




1 Fib

Fbi Fbb + FbiFib



]

is seen to close, by an edge, every V with inner node i
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Basic properties of partial closure

Partial closure is

(i) commutative

(ii) cannot be undone and

(iii) is exchangeable with selecting a submatrix

Lemma 5

Partial closure applied to GN
reg

. For N = (a, b), the transformation

KNN = zera(HNN) closes each a-line anterior path and

Quu = zerb(Wuu) each dashed, b-line collision path
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Examples of three dependence base, 3-node graphs

1 11

2 22

3 33

a) b) c)

Active path (1,2,3) induces in a) 1 ⋔ 3, in b) 1 ⋔ 3|2, and in c) 1 ⋔ 3

By letting the edge induced by the three V ’s ‘remember the type of

edge at the path endpoints’ the induced edges become in

a) 1≺ 3, b) 1 3, c) 1 3
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For N = (a, b), oa nodes in a, ob nodes in b and i, k the endpoints

of paths that are active for GN−a|b
reg

, there remain three types of active

ik-path given b in the graph having edge matrices KNN and Quu:

i≺ oa ob≺ k, i≺ oa oa ≻k, i ≻ob ob≺ k

Proposition 2

The active path remaining in KNN = zera(HNN), Quu = zerb(Wuu)

for GN−a|b
reg

are closed with the induced edge matrices Pa|b, Saa|b, Sbb

Pa|b = In[Kab + KaaQabKbb]

Saa|b = In[KaaQaaK
T
aa
], Sbb.a = In[HT

bb
QbbHbb]
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After remembering the types of edge at the path endpoints, we have with

Pa|b an induced bipartite graph of arrows pointing from b to a

Saa|b an induced covariance graph

Sbb.a an induced concentration graph

Lemma 6

Edge matrices induced by GN
reg

for fαβ|c. The subgraph induced

by nodes α ∪ β in GN−a|b
reg

captures the independence implications

of GN
reg

for fα|βcfβ|c with multivariate regression of Yα on Yβ, Yc

and conditional concentration graph for Yβ given Yc

This subgraph has induced edge matrices

Pα|β.c = [Pa|b]α,β Sαα|b = [Saa|b]α,α Sββ.a = [Sbb.a]ββ
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Proposition 3

Edge criteria for implied independences and dependences

A dependence base GN
reg

implies α ⊥⊥ β|c if Pα|β.c = 0 and it

implies α ⋔ β|c if Pα|β.c 6= 0

Corollary

The transformations of GN
reg

to get Pα|β.c use implicitly set

transitivity since edges may be introduced but never removed

For a, b, c, d disjoint subsets of index set N , set transitivity means

(a ⊥⊥ b|d and a ⊥⊥ b|cd) =⇒ (a ⊥⊥ c|d or b ⊥⊥ c|d)

Thus, the implications of the graph for a generated family

ignores path cancellations, that are possible for a member
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A regular Gaussian family violating set transitivity. For

N = (u, v), let Yu and Yv be mean-centered vector variables

with a joint Gaussian distribution. Let them have equal dimension, du,

the components of Yu and of Yu be mutually independent and all

elements in the covariance matrix cov(Yu, Yv) = Σuv be nonzero, then

cov(Yu) = Σuu diagonal, cov(Yv) = Σvv diagonal

Let further the components of Yv have equal variances ω > 1 and

the equal variances of the components Yu be κ > ω + 1.

Whenever in the described situation Σuv is orthogonal, then also

cov(Yu|Yv) = Σuu|v diagonal, cov(Yv|Yu) = Σvv|u diagonal
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