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Contingency tables

Let I =17 X ... X I}, = [lyev v @ product of
finite sets and a probability p on I such that
p(i) > 0 for all ¢ € I. The Bernoulli distribu-
tion B, is the distribution of X valued in R/
such that Pr(X = e;) = p; where (e;);cs iS
the basis of RL. If X1,..., X are iid with dis-
tribution By then Sy = X1+ -+ X follows
a multinomial distribution B, 5. An observa-
tion Sy is a contingency table. In general p
IS unknown and we are willing to estimate it
under some reasonable constraints like

p(i1,i2) = p(i1,.)p(.,i2) = f(i1)g(ip) fork =2

p(i1,12,13) = f(i1,92)g(in,i3) for k=3

or in @ more linear way

log p(i1,1i0,93) = A12(41,%2) + A23(i2,13).



Hierarchical model

We formalize this type of constraints under
the name of hierarchical model : given a fa-
mily D of subsets of V = {1,...,k} such that
D1 C D, for Dq1,D> € D is impossible (unless
D1 = D»>) the hierarchical model Mp gover-
ned by D is the set of probabilities on I such
that

DeD

where i — Ap(i) is a function depending only
on the coordinates i; of ¢ such that 5 € D.
In the sequel D« is the family of non empty
subsets of the elements of D. An important
point for performing the estimation of p un-
der these constraints is the fact that Mp is
an exponential family.



Examples of hierarchical models

(1) The most famous hierarchical model are
the one given by an undirected graph with V
as set of vertices. In this case D is the family
of the cliques of the graph and the hierarchi-
cal model is called a graphical model.

We mention two trivial models (2) D = {V}:
no constraints at all, called the saturated mo-
del.

(3) D is the set of singletons : that means
that p(i) = p1(i1) ... pr(ir) and each compo-
nents are independent.

(4) V = {a,b,c} and D = {ab,bc,ac} is an
example of hierarchical but not graphical mo-
del.



From now on we select a point called zero in
each component I, = {0,1,...,¢cy}. O € 1 is
the point with all coordinates O.

If D= {V} (saturated model), the exponen-
tial family is generated by the counting mea-
sure on the basis (e;)po of R\? and we get
for : =0

For a general hierarchical model we define
the support of ¢ = (i1,...,4,) € I as the sub-
set S(i) of V of the v € V such that i, # 0.
We define the set J C I of the 5 € I such that
S(j) isin D« we write j«i if j € J is such that
S(j5) € S(i) and the restriction of 7 to S(y)
coincide with 5. The exponential family is now
concentrated on R’ and is generated by the
counting measure on the vectors f; = >, ¢,
for : € I. The parameterization is now

6, = Z(_1)|5(i)\5(]’)| log p(i).

j<i



Therefore the exponential family is concen-
trated on the polytope of R/ with extreme

points (f;)icr-

Example : we take I = I, X I, X I. where
Io, = I, = I. = {0,1} (a binary model) and
the hierarchical model given by the pair ab
and bc. This is the graphical model

ae —be —ce

Here J = {a,b, c,ab,bc} and
Jo=0, fa=e¢a, fp =ep Jfc= e
fab = €a + €y + €eqp, foe = €p + ec + ep,
fac = ea + ec, fape = €a+ €p+ ec+ eqp + €pe

The polytope C has 8 vertices in a space of
5 dimensions.



Bayesian methods for selecting models

T he estimation of p by maximum likelihood is
difficult to perform and we are here actually
more interested in deciding if the hierarchical
model is the good one or not. Since the mo-
del is an exponential family we rather take
a Bayesian approach by using the Diaconis
Ylvisaker conjugate family as a priori distri-
butions on the natural parameter

0= (0,)jcs €R’,
namely
1 ec{d,m)
1 a) < (oeg e0diya™
Here, « > O , m is an interior point of the
convex polytope C with vertices (f;);e; and

I(m,a) is the normalization constant such
that mm o IS @ probability.

Wm,a(de) —




T he characteristic function of a convex set

Introduce a new general tool. Given a convex
set C' in R™ its support function is ho(0) =
max{(f,z) ; = € C} and its characteristic
function is defined on the interior of C by

Jo(m) =/ el0:m)—hc(9) g

n

5 do
=nVol(C —m)” =l [ g

where
CO={9 ; (0, <1 Vxel}

iIs the polar set of C. This concept is useful
here since we have the following result

Theorem 1 :
im a"I(m,a) = Jo(m)
a—0

(ust apply ||fllp — ||fllcc in the theory of Ly
spaces to prove this).



Note that this remarkable limit depends only
on the convex support of the measure u, not
on the measure itself. For example if £E =R
the measures

p=20_1+01
and
v(dz) = 1(_; 1)(z)dx
share the same C = (—1,1) (which satisfies
h(—1,1)(8) = |0]. Therefore if -1 <m <1 the

two functions

alu(m, @) = ~ g B (14 m), - (1 —m))

and the untractable
_a [ r10gu\Y arq4m)—1
ozfy(m,oz) — 27@/() (u_—l> u? du
have the same limit

00 2
Iy = [ e lap =

—00 1—m
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Comparing two exponential models

We now use this result for comparing two hie-
rarchical models by the method of the Bayes
factor. We are given two general exponential
families

= {01t1(w)—k1(01) . (qu) ; 6, € ©1)
and

Fy = {el02:t2(w))=k2(92) ) (o) 5 01 € ©1)

on the same abstract space 2. On 2 we ob-
serve (wq,...,wy) and from this sample we
have to choose between F7 and F5. The tech-
nique of the Bayesian factor is the following :
F7 and F5 have natural associated exponen-
tial families with respective domains of the
means My and M, in which we choose mq
and m» as close as possible. The normali-
sation constants for the a priori densities of
D.-Y. are I1(mq,a) and I>(mo, ). We denote

S](vl) =t1(w1) + ... +t1(wn)
et

S](VQ) = to(w1) + ... + to(wn)

10



Here comes the Bayesian factor

(1)
ami+.S
f= I ( o}—i—NN aOé‘I'N)X In(mo, )
o I (2)
1(m1, ) (M2 ESN 4

a+N
If f is big we choose the model Fy. If f is
close to zero we choose the model F5.
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Suppose now that we are comparing two hie-
rarchical models : for instance the graphical
model ae —be —ce (say M7) against the satu-
rated one, say M»>. The observed contigency
table has entries thz) and its projection to

model My has entries Nt§1). Thus the Baye-
sian factor f is

N¢(1)
= Il(amclx_—ll_—N ,oz—I—N)X I>(m2, a)
I1(mq, @) IQ(Oémgé—_T_%t(Q),Oé‘l‘N)

Now suppose that t(1) and t(2) are interior
points of the corresponding polytopes C'1 and
C>. In this case the limiting behavior of f
when o goes to zero is

I]_(t(l)7N) . JQ(mQ) |J1|—|J2‘
~ @ .
(2 N) ~ J1(mq)

f
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T he real first difficulty arises when the obser-
vations t are on the boundary of the polytope
since I1(t(1), N) is now infinite. We use the
following delicate result : let y belonging to
a face F(y) of C of codimension M(y) and
let m be in interior of the polytope C. Then

T heorem 2 :

MM o (mA4-(1-N)y) —x0 Ipey) @), (m2)
where C5 is the cone generated by (C —y) N
F(y)+

The consequence is that if the observation ¢

is on the boundary of C we have, with the

. . o«
simpler notation A\ = SIN

AMO T(Am + (1 — M\)t, N) =, Cte

which implies that the Bayesian factor be-
haves as f ~ oLt =D o e where D(¢)
IS the dimension of the face containing ¢t.
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Linking the facets of C and the characteristic
function Jg

How do we check that ¢ is on the boundary ?
By knowing the facets of C.

Theorem 3 : If F is the family of facets of
the polytope C and if gr(m) = 0 is the affine
equation of the facet m, then

m = Jo(m) 1] gr(m)
FeF

is a polynomial of degree < |F]|.

Example 1 : C = [—1, 1] Its facets are {—1,1}
with equations g_1(m) = 1 4+ m, gi1(m) =
1—m and (1 —m?)J_q 1)(m) = 2. A conse-
quence is that J~(m) is a rational function
whose denominator is factorisable in affine
forms which give the equations of the facets.
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Example 2 : quadrangle in the plane. In R2
with canonical basis (e1, e>) consider for a, b >
1 the vector f = aeq1 + beo and the convex C
generated by 0, eq, e, f. We get by direct cal-
culation

Jo(m) = /RQe<9’m>_hC(9)d6 =

1+ % tmo) (1 + 2 tmy)
mimo(l —my + %5 +m )(1+—m1—m2)'

aeq1 + beo
62/
0O—=¢€1

This illustrates the preceeding theorem : mq1 =
a—1

mo=1—mq+ m2=1—|——m1—m2=0
define the 4 facets of the quadrangle C.

15



Example 3 : Octahedron in RY,

In the Euclidean space E = RY denote by
(ej);izl the canonical basis. The octahedron

is the convex hull C of the 2d vectors (iej)?zl.
Thus we have m € C' if and only if

d
Z |m]\ < 1.
J=1
It is easily seen that

hco(0) = max{|0;[,j = 1,...,d}.

If e = (61,...,€d) c {—1,1}d = E,; we write
s(e) = €1 ---€4. We define the linear form

d
fe(m) — Z ejmj.

J=1
We get the general formula

Jo(m) = /Rde<97m>—h0<9>d9 =

1

s(e)
Z 1— fe(m)

d :
sz]. m; eclby
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Example 3, continued : Octahedron in R3.

For instance in the particular case d = 3 we
get after reduction to the same denominator

J(;(m)% I (1-f-(m)) = 3—2(m2+m3+m3)
eclb3

+2(m2m3 + ma3m3 + m3m3) —mT —m% —m3
We observe that the numerator of Jo(m) is a
polynomial with degree 4, while the denomi-
nator has eight factors describing the facets
of the classical regular octahedron. One im-
portant point of the present example is the
following : the numerator has in general no
special properties of factorization as it oc-

curs in the quadrangle or in the hierarchical
model in the decomposable case.
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Decomposable graphs

Theorem 4 : Let (V,&) be a decomposable
graph, let D be the family of the complete
subsets of V, let C be the family of its cliques,
let S be the family of its minimal separators
and let v(S) be the multiplicity of the minimal
separator S. For each D € D and each 53 € J
such that S(j) C D consider the affine forms
defined by

gop(m) = 1+ S (=)W,
7:5(j)CD
T (—)ISDI=ISGOy,,
7:8(3)CD, jo<j
Then for m in the interior C of the convex
hull of the f;'s we have I(m,«a) =

9jo,p(m)

[Toee T (ago,c(m)) jer.s¢)cey T (agjc(m))

M (@) IIses | (ag0,s(m) jers¢ycsy T (@gjs(m)) "
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Jo(m) for a decomposable graph

In particular for m € C' we have

hm allI(m,a) = Jo(m) =

v(S)
[Ises [go,s(m) [I{jcr:5G)csy gj,s(m)}

llcec QO,C(m) H{jej;s(j)cc} gj,C(m)

As a consequence of Theorem 3, the family
facets of C are parameterized by the set

U {i e Ju{0}; 5() c ¢}
Ccec

and the corresponding equation for the facet
F' associated to the clique C and to the point
j € JU{0} such that S(j) C C'is g; c(m) = 0.
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Basic facets. Consider now a general hierar-
chical model governed by the family D of non
empty subsets of V' (recall such that D € D
and D1 C D implies D € D). Denote by C C D
the family of maximal elements (if the hie-
rarchical model was a graphical one, C would
be the family of cliques.

Theorem 5 : Let D be a maximal element of
D. The affine equations

goc(m) = 14+ 3 (~1)FWDly,
7:8()CD
3 (_1)!S(J)|—|S(Jo)|mj
3:8(F)CD, joy
define facets of C (called basic facets)

gjo,D(m)

Clearly this is an extension of Theorem 4
which was devoted to the decomposable case.
In Theorem 4 ALL facets where basic. In the
present general case, there are non basic fa-
cets. We have the following conjecture : if all
facets are basic, the hierarchical model is a
decomposable graphical model.
20



Facets for a cycle The binary graphical model
governed by a cycle has been much studied. It
happens that the facets of the corresponding
polytope C have been studied in different
contexts. Since we are in the binary case and
since V has n elements, there exist 4n ba-
sic facets. But there also exist other ones, as
discovered by Deza and Laurent (1995), or
Hosten and Sullivant (2002).

Theorem 6 : The non basic facets of the
binary graphical model governed by a cycle
V ={1,2,...,n} are indexed by the 2"~ odd
subsets F' of the set E of the n edges of the
cycle. The corresponding affine equation is
gr(m) =

£ -1

Z (ma—l—mb—Qmab)—( Z Moy — Z me>— 5

(a,b)eF veV ecE

Hence in the case of a cycle the polytope C
has 4n + 2" 1 facets : 24 for n = 4 and 36

for n = 5.
21



Two way interaction models They are the
hierarchical models such that all maximal ele-
ments of D have only two elements. We can
therefore represent such a model by a graph,
but the interpretation of this graph should
not be the interpretation of a graph in the
case of a graphical model (unless the cliques
of this graphical model have always two ele-
ments, like in a cycle of size > 4 or a tree).

A binary two way interaction model whose
graph has m edges has exactly 4m basic fa-
cets.

22



T he correlation polytope The binary two way
interaction model obtained by considering the
complete graph K, is supported by the poly-
tope C,,. The polytope C,, has been the sub-
ject of intense studies in different contexts
(see Deza and Laurent 1995) where it is cal-
led the correlation polytope. The number |J| =
n(n + 1)/2 is the dimension of the space of
symmetric matrices of order n and (), can
be seen as the convex hull of the 2™ sym-
metric matrices fr where T ' C {1,...,n} and
fr(i,7) =1 if 4,5 € T and fr(i,7) = 0 if not.
The set of facets of ()}, and their number F),
has been studied for the first values of n < 7.
One gets in particular

3 =16, Fy, = 56, Fr = 368,

Fs = 116,764, F, = 49,594 520.
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The two way interaction model C3

et us insist on the fact that the two way in-
teraction model C3 is the hierarchical model
of probabilities (p(i));cr on I = I1 x I x I3
such that there exists 3 functions A; such
that

log p(i1,ip,13) = A3(i1,i2)+A2(i1,13)+A1(in,13),

and that we consider only the binary case

24



For the correlation polytope C3, we now ex-
plain how to compute I(m,a) and Jg,(m).

Theorem 7 : Define the positive numbers
A= mgy, B = ma, C = mq A = my —
Mgy, B’ = me—mae, C' =1 —mq, D = my,.
Then the sixth order integral I(m, «) is equal
to the one dimensional Mellin transform

o0
/ LoD=1
0

>F1(aA, aB; aC;1—x) s F1(aA’,aB"; aC': 1—z)dx

multiplied by the following product of gamma
functions
(AT (aB)l (aANT (aB)
(o)l (aCO)T (aC)

XM (a(C—ANT (a(C—B)I(a(C'—ANT (a(C’'—B"

25



LLet us indicate the sources of the Gauss hy-
pergeometric function in this calculation. In

I(m,a) we use the change of variable ug, =

eV, uy, = ePab, ... Consider the polynomial

P = 14ug+uptuctuqupu p+uptctp.~+ugUclac

+FUqUPUCU g pUpUac-
The integral I(m,«) becomes

ugma— luzémb_ 1ugmc— 1u24gnab_ 1u?cmbc_ 1uggzac— 1
/(0,00)6 P«

dugdupducdu,pdup.duge

We first integrate with respect to wug. This
leads to an integral on (0, c0)° that we treat
by the following observation

26



If a,b,c, R are positive numbers denote
I = /OO /OO xa_lyb_l dxdy.
0 Jo (1+az+y+ Ray)atdte
Then I =
M(a)F () (b+ )l (a+c)
(a4 b+ c)?
Applying it twice reduces the integral on (0, c0)?

to an integral on (0,00) involving a product
of two hypergeometric functions.

>F1(a,b,a+b4c; 1—R).

27



Why this horrible I(m,a)?

Because it provides the only known way to
compute Jo,(m) = limy_0a®I(m, ). Recall
that

>F1(aA,aB; aC;1 — e%)

. < (@A)n(aB)n
= 2 n!(aC)n

(1 — ea)™
n=0

We need two difficult limits. If v > 0 :

m »Fi1(aA,aB;aC;1 — e%) —

li
a—0

B(C—A)e—m_ A(C—B)e_vB
C(B—-A) C(B—-A)
and if v <O0:

lim >Fi(aA,aB;aC;1 — e%) —

a—0

(C — A)(C — B) — ABeV(C—A=B)
C(C—-A—-B)

28



Among other things, the proof of the last
statement uses the following undergraduate
exercise :

Let a,b > 0. If X, has beta distribution

Boza,ozb

what is the limiting distribution of X5 when
a— 07

Answer

a

b
o b51 + atb bﬁa,l

(use Mellin transform).

Consequence : if Xao ~ Byq,qap then

b
Pr(Xa < z1/9) — 00 s ba:a.
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Here is Jo,(m) =
1

ABA'B'(C — A)(C — B)(C' — AN(C' — B)
1

“(B— A) (B — A

{(c _ A)(C' — A\BB'

(A+ A" — D)
(C — B)(C' — ANAB'
 (B+ A" -D)

(C — A)(C' — B)BA'
 (A+B' - D)

(C — B)(C' — B")AA’
T (B+ B’ — D) J

1

ABA'B'(C — A)(C — B)(C' — AN(C' — BY)
]

“(C—A_B)(C' — A — B

{(C — A)(C - B)(C' = A")(C" - B')

(C — A)(C — B)?X’B’
- (C'"+D- A —B)
AB(C' — A")(C' — B)
 (C+D-A-DB)
ABA'B
+(C—|—C’—|—D—A—A’—B—B’)}30




Recall that
A =mgy,, B=mge, C = mq, Al = mp — Map,

B/:mc_mac, C/:].—ma, D:mbc

After simplification, the four undesirable de-
nominators B—A,B'— A" C—A—B,C'—A'- B’
disappear (but the numerator according to
Maple is the sum of four thousand mono-
mials). The sixteen remaining denominators
give the sixteen facets. The 12 basic facets
are given by the annulation of the 12 forms

AB,C—-—AC—-BA B Cc—-A C - B D,

D—-A-A"D—-B-B' D4+C+C"—-A-A'—-B-B'.
The 4 non basic facets are given by

D+C—-A—B,D—-A'-B,D—A—-B'.D+C'-A'—B’.
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A = mabs B = Mac, D = mpe, A/ — My —
Mgy, C—A = mg—my, B = mc—mge, C—B =
mMaq—Mqc, A—I—A/—D — Mp—Mpe, B—'—B/—D —
me—mpe, C'—A'=1—meg—my+my,, C'—B' =
1—mg—mc+mge, C+C'+D—-A—A'—B—-B' =
1—mp—mec+my., A+B' —D = me+mgp—mac—
mp., A'+B—D = my+magec—my—mp., C+D—
A—B = mg+mp.—maec—my, C'+D—A'—B' =

1 —mg— my — me + Mace + Mmyp + My,
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