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Contingency tables

Let I = I1 × . . . × Ik =
∏

v∈V Iv a product of

finite sets and a probability p on I such that

p(i) > 0 for all i ∈ I. The Bernoulli distribu-

tion Bp is the distribution of X valued in RI

such that Pr(X = ei) = pi where (ei)i∈I is

the basis of RI . If X1, . . . , XN are iid with dis-

tribution Bp then SN = X1+ · · ·+XN follows

a multinomial distribution Bp,N . An observa-

tion SN is a contingency table. In general p

is unknown and we are willing to estimate it

under some reasonable constraints like

p(i1, i2) = p(i1, .)p(., i2) = f(i1)g(i2) for k = 2

p(i1, i2, i3) = f(i1, i2)g(i2, i3) for k = 3

or in a more linear way

log p(i1, i2, i3) = λ12(i1, i2) + λ23(i2, i3).
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Hierarchical model

We formalize this type of constraints under

the name of hierarchical model : given a fa-

mily D of subsets of V = {1, . . . , k} such that

D1 ⊂ D2 for D1, D2 ∈ D is impossible (unless

D1 = D2) the hierarchical model MD gover-

ned by D is the set of probabilities on I such

that

log p(i1, . . . , ik) =
∑

D∈D

λD(i)

where i 7→ λD(i) is a function depending only

on the coordinates ij of i such that j ∈ D.

In the sequel D< is the family of non empty

subsets of the elements of D. An important

point for performing the estimation of p un-

der these constraints is the fact that MD is

an exponential family.
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Examples of hierarchical models

(1)The most famous hierarchical model are

the one given by an undirected graph with V

as set of vertices. In this case D is the family

of the cliques of the graph and the hierarchi-

cal model is called a graphical model.

We mention two trivial models (2) D = {V } :

no constraints at all, called the saturated mo-

del.

(3) D is the set of singletons : that means

that p(i) = p1(i1) . . . pk(ik) and each compo-

nents are independent.

(4) V = {a, b, c} and D = {ab, bc, ac} is an

example of hierarchical but not graphical mo-

del.
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From now on we select a point called zero in

each component Iv = {0,1, . . . , cv}. 0 ∈ I is

the point with all coordinates 0.

If D = {V } (saturated model), the exponen-

tial family is generated by the counting mea-

sure on the basis (ei)I\0 of RI\0 and we get

for i 6= 0

p(i) =
e〈ξ,ei〉

1+
∑

j∈I\0 e
〈ξ,ej〉

=
eξi

1+
∑

j∈I\0 e
ξj
.

For a general hierarchical model we define

the support of i = (i1, . . . , ik) ∈ I as the sub-

set S(i) of V of the v ∈ V such that iv 6= 0.

We define the set J ⊂ I of the j ∈ I such that

S(j) is in D< we write j /i if j ∈ J is such that

S(j) ⊂ S(i) and the restriction of i to S(j)

coincide with j. The exponential family is now

concentrated on RJ and is generated by the

counting measure on the vectors fi =
∑

j/i ej
for i ∈ I. The parameterization is now

θj =
∑

j/i

(−1)|S(i)\S(j)| log p(i).
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Therefore the exponential family is concen-

trated on the polytope of RJ with extreme

points (fi)i∈I .

Example : we take I = Ia × Ib × Ic where

Ia = Ib = Ic = {0,1} (a binary model) and

the hierarchical model given by the pair ab

and bc. This is the graphical model

a • −b • −c•

Here J = {a, b, c, ab, bc} and

f0 = 0, fa = ea, fb = eb, fc = ec,

fab = ea + eb + eab, fbc = eb + ec + ebc,

fac = ea + ec, fabc = ea + eb + ec + eab + ebc

The polytope C has 8 vertices in a space of

5 dimensions.
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Bayesian methods for selecting models

The estimation of p by maximum likelihood is

difficult to perform and we are here actually

more interested in deciding if the hierarchical

model is the good one or not. Since the mo-

del is an exponential family we rather take

a Bayesian approach by using the Diaconis

Ylvisaker conjugate family as a priori distri-

butions on the natural parameter

θ = (θj)j∈J ∈ R
J ,

namely

πm,α(dθ) =
1

I(m,α)
×

eα〈θ,m〉

(
∑

i∈I e
〈θ,fi〉)α

dθ

Here, α > 0 , m is an interior point of the

convex polytope C with vertices (fi)i∈I and

I(m,α) is the normalization constant such

that πm,α is a probability.
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The characteristic function of a convex set

Introduce a new general tool. Given a convex

set C in Rn its support function is hC(θ) =

max{〈θ, x〉 ; x ∈ C} and its characteristic

function is defined on the interior of C by

JC(m) =
∫

Rn
e〈θ,m〉−hC(θ)dθ

= n!Vol(C −m)o = n!
∫

Co

dθ

(1− 〈θ,m〉)n+1

where

Co = {θ ; 〈θ, x〉 ≤ 1 ∀x ∈ C}

is the polar set of C. This concept is useful

here since we have the following result

Theorem 1 :

lim
α→0

αnI(m,α) = JC(m)

(just apply ‖f‖p → ‖f‖∞ in the theory of Lp

spaces to prove this).
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Note that this remarkable limit depends only

on the convex support of the measure µ, not

on the measure itself. For example if E = R

the measures

µ = δ−1 + δ1

and

ν(dx) = 1(−1,1)(x)dx

share the same C = (−1,1) (which satisfies

h(−1,1)(θ) = |θ|. Therefore if −1 < m < 1 the

two functions

αIµ(m,α) =
α

2α+1
B(

α

2
(1 +m),

α

2
(1−m))

and the untractable

αIν(m,α) =
α

22α

∫ ∞

0

(

logu

u− 1

)α

u
α
2(1+m)−1du

have the same limit

J(−1,1)(m) =
∫ ∞

−∞
eθm−|θ|dθ =

2

1−m2
.

9



Comparing two exponential models

We now use this result for comparing two hie-

rarchical models by the method of the Bayes

factor. We are given two general exponential

families

F1 = {e〈θ1,t1(w)〉−k1(θ1)ν1(dw) ; θ1 ∈ Θ1}

and

F2 = {e〈θ2,t2(w)〉−k2(θ2)ν2(dw) ; θ1 ∈ Θ1}

on the same abstract space Ω. On Ω we ob-

serve (w1, . . . , wN) and from this sample we

have to choose between F1 and F2. The tech-

nique of the Bayesian factor is the following :

F1 and F2 have natural associated exponen-

tial families with respective domains of the

means M1 and M2 in which we choose m1

and m2 as close as possible. The normali-

sation constants for the a priori densities of

D.-Y. are I1(m1, α) and I2(m2, α). We denote

S
(1)
N = t1(ω1) + . . .+ t1(ωN)

et

S
(2)
N = t2(ω1) + . . .+ t2(ωN)
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Here comes the Bayesian factor

f =
I1(

αm1+S
(1)
N

α+N , α+N)

I1(m1, α)
×

I2(m2, α)

I2(
αm2+S

(2)
N

α+N , α+N)

If f is big we choose the model F1. If f is

close to zero we choose the model F2.
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Suppose now that we are comparing two hie-

rarchical models : for instance the graphical

model a •−b •−c• (say M1) against the satu-

rated one, say M2. The observed contigency

table has entries Nt
(2)
i and its projection to

model M1 has entries Nt
(1)
j . Thus the Baye-

sian factor f is

f =
I1(

αm1+Nt(1)

α+N , α+N)

I1(m1, α)
×

I2(m2, α)

I2(
αm2+Nt(2)

α+N , α+N)

Now suppose that t(1) and t(2) are interior

points of the corresponding polytopes C1 and

C2. In this case the limiting behavior of f

when α goes to zero is

f ∼
I1(t

(1), N)

I2(t(2), N)
×

J2(m2)

J1(m1)
α|J1|−|J2|.
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The real first difficulty arises when the obser-

vations t are on the boundary of the polytope

since I1(t
(1), N) is now infinite. We use the

following delicate result : let y belonging to

a face F (y) of C of codimension M(y) and

let m be in interior of the polytope C. Then

Theorem 2 :

λM(y)
JC(λm+(1−λ)y) →λ→0 JF (y)(y)JC2

(m2)

where C2 is the cone generated by (C − y) ∩

F (y)⊥

The consequence is that if the observation t

is on the boundary of C we have, with the

simpler notation λ = α
α+N

λM(t)I(λm+ (1− λ)t, N) →λ→0 Cte

which implies that the Bayesian factor be-

haves as f ∼ αD(t(1))−D(t(2))×Cte where D(t)

is the dimension of the face containing t.
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Linking the facets of C and the characteristic

function JC

How do we check that t is on the boundary ?

By knowing the facets of C.

Theorem 3 : If F is the family of facets of

the polytope C and if gF (m) = 0 is the affine

equation of the facet m, then

m 7→ JC(m)
∏

F∈F

gF (m)

is a polynomial of degree < |F|.

Example 1 : C = [−1,1] Its facets are {−1,1}

with equations g−1(m) = 1 + m, g1(m) =

1−m and (1−m2)J(−1,1)(m) = 2. A conse-

quence is that JC(m) is a rational function

whose denominator is factorisable in affine

forms which give the equations of the facets.
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Example 2 : quadrangle in the plane. In R2

with canonical basis (e1, e2) consider for a, b >

1 the vector f = ae1 + be2 and the convex C

generated by 0, e1, e2, f. We get by direct cal-

culation

JC(m) =
∫

R2
e〈θ,m〉−hC(θ)dθ =

(1+ a−1
b m2)(1 + b−1

a m1)

m1m2(1−m1 + a−1
b m2)(1 + b−1

a m1 −m2)
.

ae1 + be2

e2

0 e1

This illustrates the preceeding theorem : m1 =

m2 = 1−m1+ a−1
b m2 = 1+ b−1

a m1−m2 = 0

define the 4 facets of the quadrangle C.

15



Example 3 : Octahedron in Rd.

In the Euclidean space E = Rd denote by

(ej)
d
j=1 the canonical basis. The octahedron

is the convex hull C of the 2d vectors (±ej)
d
j=1.

Thus we have m ∈ C if and only if

d
∑

j=1

|mj| < 1.

It is easily seen that

hC(θ) = max{|θj|; j = 1, . . . , d}.

If ε = (ε1, . . . , εd) ∈ {−1,1}d = Ed we write

s(ε) = ε1 · · · εd. We define the linear form

fε(m) =
d
∑

j=1

εjmj.

We get the general formula

JC(m) =
∫

Rd
e〈θ,m〉−hC(θ)dθ =

1
∏d
j=1mj

∑

ε∈Ed

s(ε)

1− fε(m)
.
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Example 3, continued : Octahedron in R3.

For instance in the particular case d = 3 we

get after reduction to the same denominator

JC(m)
1

8

∏

ε∈E3

(1−fε(m)) = 3−2(m2
1+m2

2+m2
3)

+2(m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1)−m4

1 −m4
2 −m4

3

We observe that the numerator of JC(m) is a

polynomial with degree 4, while the denomi-

nator has eight factors describing the facets

of the classical regular octahedron. One im-

portant point of the present example is the

following : the numerator has in general no

special properties of factorization as it oc-

curs in the quadrangle or in the hierarchical

model in the decomposable case.
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Decomposable graphs

Theorem 4 : Let (V, E) be a decomposable

graph, let D be the family of the complete

subsets of V, let C be the family of its cliques,

let S be the family of its minimal separators

and let ν(S) be the multiplicity of the minimal

separator S. For each D ∈ D and each j ∈ J

such that S(j) ⊂ D consider the affine forms

defined by

g0,D(m) = 1+
∑

j;S(j)⊂D

(−1)|S(j)|mj

gj0,D(m) =
∑

j;S(j)⊂D, j0/j

(−1)|S(j)|−|S(j0)|mj

Then for m in the interior C of the convex

hull of the fi’s we have I(m,α) =
∏

C∈C Γ(αg0,C(m))
∏

{j∈J;S(j)⊂C}Γ(αgj,C(m))

Γ(α)
∏

S∈S

[

Γ(αg0,S(m))
∏

{j∈J;S(j)⊂S}Γ(αgj,S(m))
]ν(S
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JC(m) for a decomposable graph

In particular for m ∈ C we have

lim
α→

α|J |I(m,α) = JC(m) =

∏

S∈S

[

g0,S(m)
∏

{j∈J;S(j)⊂S} gj,S(m)
]ν(S)

∏

C∈C g0,C(m)
∏

{j∈J;S(j)⊂C} gj,C(m)

As a consequence of Theorem 3, the family

facets of C are parameterized by the set

⋃

C∈C

{j ∈ J ∪ {0};S(j) ⊂ C}

and the corresponding equation for the facet

F associated to the clique C and to the point

j ∈ J ∪{0} such that S(j) ⊂ C is gj,C(m) = 0.
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Basic facets. Consider now a general hierar-

chical model governed by the family D of non

empty subsets of V (recall such that D ∈ D

and D1 ⊂ D implies D ∈ D). Denote by C ⊂ D

the family of maximal elements (if the hie-

rarchical model was a graphical one, C would

be the family of cliques.

Theorem 5 : Let D be a maximal element of

D. The affine equations

g0,C(m) = 1+
∑

j;S(j)⊂D

(−1)|S(j)|mj

gj0,D(m) =
∑

j;S(j)⊂D, j0/j

(−1)|S(j)|−|S(j0)|mj

define facets of C (called basic facets)

Clearly this is an extension of Theorem 4

which was devoted to the decomposable case.

In Theorem 4 ALL facets where basic. In the

present general case, there are non basic fa-

cets. We have the following conjecture : if all

facets are basic, the hierarchical model is a

decomposable graphical model.
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Facets for a cycle The binary graphical model

governed by a cycle has been much studied. It

happens that the facets of the corresponding

polytope C have been studied in different

contexts. Since we are in the binary case and

since V has n elements, there exist 4n ba-

sic facets. But there also exist other ones, as

discovered by Deza and Laurent (1995), or

Hosten and Sullivant (2002).

Theorem 6 : The non basic facets of the

binary graphical model governed by a cycle

V = {1,2, . . . , n} are indexed by the 2n−1 odd

subsets F of the set E of the n edges of the

cycle. The corresponding affine equation is

gF (m) =

∑

(a,b)∈F

(ma+mb−2mab)−

(

∑

v∈V

mv−
∑

e∈E

me

)

−
|F | − 1

2

Hence in the case of a cycle the polytope C

has 4n + 2n−1 facets : 24 for n = 4 and 36

for n = 5.
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Two way interaction models They are the

hierarchical models such that all maximal ele-

ments of D have only two elements. We can

therefore represent such a model by a graph,

but the interpretation of this graph should

not be the interpretation of a graph in the

case of a graphical model (unless the cliques

of this graphical model have always two ele-

ments, like in a cycle of size ≥ 4 or a tree).

A binary two way interaction model whose

graph has m edges has exactly 4m basic fa-

cets.
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The correlation polytope The binary two way

interaction model obtained by considering the

complete graph Kn is supported by the poly-

tope Cn. The polytope Cn has been the sub-

ject of intense studies in different contexts

(see Deza and Laurent 1995) where it is cal-

led the correlation polytope. The number |J | =

n(n + 1)/2 is the dimension of the space of

symmetric matrices of order n and Cn can

be seen as the convex hull of the 2n sym-

metric matrices fT where T ⊂ {1, . . . , n} and

fT (i, j) = 1 if i, j ∈ T and fT (i, j) = 0 if not.

The set of facets of Cn and their number Fn

has been studied for the first values of n ≤ 7.

One gets in particular

F3 = 16, F4 = 56, F5 = 368,

F6 = 116,764, F7 = 49,594,520.
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The two way interaction model C3

Let us insist on the fact that the two way in-

teraction model C3 is the hierarchical model

of probabilities (p(i))i∈I on I = I1 × I2 × I3
such that there exists 3 functions λj such

that

log p(i1, i2, i3) = λ3(i1, i2)+λ2(i1, i3)+λ1(i2, i3),

and that we consider only the binary case

Ij = {0,1}.
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For the correlation polytope C3, we now ex-

plain how to compute I(m,α) and JC3
(m).

Theorem 7 : Define the positive numbers

A = mab, B = mac, C = ma, A′ = mb −

mab, B′ = mc − mac, C′ = 1 − ma, D = mbc.

Then the sixth order integral I(m,α) is equal

to the one dimensional Mellin transform
∫ ∞

0
xαD−1×

2F1(αA,αB;αC; 1−x) 2F1(αA
′, αB′;αC′; 1−x)dx

multiplied by the following product of gamma

functions

Γ(αA)Γ(αB)Γ(αA′)Γ(αB′)

Γ(α)Γ(αC)Γ(αC′)

×Γ(α(C−A))Γ(α(C−B))Γ(α(C′−A′))Γ(α(C′−B′)
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Let us indicate the sources of the Gauss hy-

pergeometric function in this calculation. In

I(m,α) we use the change of variable ua =

eθ, uab = eθab, . . . . Consider the polynomial

P = 1+ua+ub+uc+uaubuab+ubucubc+uaucuac

+uaubucuabubcuac.

The integral I(m,α) becomes

∫

(0,∞)6

uαma−1
a u

αmb−1
b uαmc−1

c u
αmab−1
ab u

αmbc−1
bc uαmac−1

ac

Pα

duadubducduabdubcduac

We first integrate with respect to ua. This

leads to an integral on (0,∞)5 that we treat

by the following observation
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If a, b, c, R are positive numbers denote

I =
∫ ∞

0

∫ ∞

0

xa−1yb−1

(1 + x+ y +Rxy)a+b+c
dxdy.

Then I =

Γ(a)Γ(b)Γ(b+ c)Γ(a+ c)

Γ(a+ b+ c)2
2F1(a, b, a+b+c; 1−R).

Applying it twice reduces the integral on (0,∞)5

to an integral on (0,∞) involving a product

of two hypergeometric functions.
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Why this horrible I(m,α)?

Because it provides the only known way to

compute JC3
(m) = limα→0α

6I(m,α). Recall

that

2F1(αA,αB;αC; 1− e
v
α)

=
∞
∑

n=0

(αA)n(αB)n

n!(αC)n
(1− e

v
α)n.

We need two difficult limits. If v > 0 :

lim
α→0

2F1(αA,αB;αC; 1− e
v
α) =

B(C −A)

C(B −A)
e−vA −

A(C −B)

C(B −A)
e−vB

and if v < 0 :

lim
α→0

2F1(αA,αB;αC; 1− e
v
α) =

(C −A)(C −B)−ABev(C−A−B)

C(C −A−B)
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Among other things, the proof of the last

statement uses the following undergraduate

exercise :

Let a, b > 0. If Xα has beta distribution

βαa,αb

what is the limiting distribution of Xα
α when

α → 0?

Answer :

a

a+ b
δ1 +

b

a+ b
βa,1

(use Mellin transform).

Consequence : if Xα ∼ βαa,αb then

Pr(Xα < x1/α) →α→0
b

a+ b
xa.
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Here is JC3
(m) =

1

ABA′B′(C −A)(C −B)(C′ −A′)(C′ −B′)

×
1

(B −A)(B′ −A′)

{
(C −A)(C′ −A′)BB′

(A+A′ −D)

−
(C −B)(C′ −A′)AB′

(B +A′ −D)

−
(C −A)(C′ −B′)BA′

(A+B′ −D)

+
(C −B)(C′ −B′)AA′

(B +B′ −D)
}

+
1

ABA′B′(C −A)(C −B)(C′ −A′)(C′ −B′)

×
1

(C −A−B)(C′ −A′ −B′)

{
(C −A)(C −B)(C′ −A′)(C′ −B′)

D

−
(C −A)(C −B)A′B′

(C′ +D −A′ −B′)

−
AB(C′ −A′)(C′ −B′)

(C +D −A−B)

+
ABA′B′

(C + C′ +D −A−A′ −B −B′)
}
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Recall that

A = mab, B = mac, C = ma, A′ = mb −mab,

B′ = mc −mac, C′ = 1−ma, D = mbc.

After simplification, the four undesirable de-

nominators B−A,B′−A′, C−A−B,C′−A′−B′

disappear (but the numerator according to

Maple is the sum of four thousand mono-

mials). The sixteen remaining denominators

give the sixteen facets. The 12 basic facets

are given by the annulation of the 12 forms

A,B,C −A,C −B,A′, B′, C′ −A′, C′ −B′, D,

D−A−A′, D−B−B′, D+C+C′−A−A′−B−B′.

The 4 non basic facets are given by

D+C−A−B,D−A′−B,D−A−B′, D+C′−A′−B′.

31



A = mab, B = mac, D = mbc, A′ = mb −

mab, C−A = ma−mab, B′ = mc−mac, C−B =

ma−mac, A+A′−D = mb−mbc, B+B′−D =

mc−mbc, C′−A′ = 1−ma−mb+mab, C′−B′ =

1−ma−mc+mac, C+C′+D−A−A′−B−B′ =

1−mb−mc+mbc, A+B′−D = mc+mab−mac−

mbc, A′+B−D = mb+mac−mab−mbc, C+D−

A−B = ma+mbc−mac−mab, C′+D−A′−B′ =

1−ma −mb −mc +mac +mab +mbc.
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