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Graphs as Metaphors

Representation of statistical structures in terms of graphs
G = {V ,E}, is a useful metaphor that allows us to exploit
the mathematical language of graph theory and some
relatively simple results.
Graphs often provide powerful representations for the
interpretation of models.
Vertices and edges have different meaning in different
statistical settings.
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Graphical Representations of Statistical Models

Variables Individuals
Directed a b

Undirected c d

a—HMMs, state-space models, Bayes nets, causal models
(DAGs), recursive partitioning models
b—social networks, trees, citation and email networks
c—covariance selection models, log-linear models,
multivariate time-series models
d—relational networks, co-authorship networks

Note that a and c refer to probability models, while b and d are
used to describe observed data.
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a—HMMs, State-Space Models
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a—Causal Models, DAGs

CHILD network (blue babies) (Cowell et al.,1999)
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b—Social Networks

AIDS blog network (Kolaczyk, 2009)
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b—Trees

Ancestral Trees (Kolaczyk, 2009)

7 / 34



c—Log-linear Models

Prognostic factors for coronary heart disease for Czech
autoworkers—26 table (Edwards and Hrvanek, 1985)
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d—Relational Networks

Zachary’s “karate club” network (Zachary, 1977; Kolaczyk,
2009)
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d—Yeast Protein-Protein Interaction

Airoldi et al. (2008)
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Graphical Models for Variables—Rest of Workshop!!

The following Markov conditions are equivalent:
Pairwise Markov Property: For all nonadjacent pairs of
vertices, i and j , i ⊥ j | K \ {i , j}.
Global Markov Property: For all triples of disjoint subsets of
K , whenever a and b are separated by c in the graph,
a ⊥ b | c.
Local Markov Property: For every vertex i , if c is the
boundary set of i , i.e., c = bd(i), and b = K \ {i ∪ c} , then
i ⊥ b | c.

All discrete graphical models are log-linear.
Gaussian graphical model selection problem involves
estimating the zero-pattern of the inverse covariance or
concentration matrix.
For DAGs, we continue to use Markov properties but also
exploit partial ordering of variables.
Always assume individuals or units are independent r.v.’s.
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Models for Individuals/Units in Networks

Graph describes observed adjacency matrix.
Usually use 1 for presence of an edge, and 0 for absence.
Can also have weights in place of 1’s.

Except for Erdös-Rényi-Gilbert model, where occurrence
of edges corresponds to iid Bernoulli r.v.’s, units are
dependent.
Simplest generalization of E-R-G model assumes that
dyads are independent—e.g., the p1 model of Holland and
Leinhardt, which has additional parameters for
reciprocation in directed networks.
Exponential Random Graph Models (ERGMs) that include
“star” and “triangle” motifs no longer have dyadic
independence.
Can have multiple relationships measure on same
individuals/units.
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Erdös-Rényi-Gilbert Model

In G(n,M) model, we chose graph uniformly at random
from the collection of all graphs which have n nodes and M
edges—hypergeometric distribution associated with the
degree of a node.
In G(n,p) model, we connect nodes in graph
independently, with constant probability p, Now M is
random and has a binomial distribution with probability((n

2)
M

)
pM(1− p)(n

2)−M .
interesting probability structure, especially as as n and M
get large, but not much of interest statistically for a fixed n
or M since basically we are in a simple distributional
setting.
This changes when we let p vary depending on the nodes
it connects, and especially when we allow edges to be
directed and dependent.
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Holland and Leinhardt p1 model

n nodes, random occurrence of directed edges.
Describe the probability of an edge occurring between
nodes i and j :

log Pij (0,0) = λij

log Pij (1,0) = λij + αi + βj + θ

log Pij (0,1) = λij + αj + βi + θ

log Pij (1,1) = λij + αi + βj + αj + βi + 2θ + ρij

3 common forms:
ρij = 0 (no reciprocal effect)
ρij = ρ (constant reciprocation factor)
ρij = ρ+ ρi + ρj (edge-dependent reciprocation)

When edges are undirected, p1 reduces to the beta model.
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Estimation for p1

The likelihood function for the p1 model is clearly of
exponential family form.
For the constant reciprocation version, we have

log p1(x) ∝ x++θ +
∑

i

xi+αi +
∑

j

x+jβj +
∑

ij

xijxjiρ (1)

Get MLEs using iterative proportional fitting—method
scales.
Holland-Leinhardt explored goodness of fit of model
empirically by comparing ρij = 0 vs. ρij = ρ.

Standard asymptotics (normality and χ2 tests) aren’t
applicable; no. parameters increases with no. of nodes.

Fienberg and Wasserman (1981) use edge-dependent
reciprocation model to test ρij = ρ.
Algebraic Statistics: Petrović et al. (2010) provide Markov
bases; Rinaldo et al. (2011) characterize MLE existence.
Goldenberg et al. (2010) review these and related models.
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Exponential Random Graph Models (ERGMs)

Let X be a n × n adjacency matrix or a 0-1 vector of length(n
2

)
or a point in {0,1}n).

Identify a set of network statistics

t = (t1(X ), . . . , tk (X )) ∈ Rk

and construct a distribution such that t is a vector of
sufficient statistics.
This leads to an exponential family model of the form:

Pθ(X = x) = h(x) exp{θ · t − ψ(θ)},

where
θ ∈ Θ ⊆ Rk is the natural parameter space;
ψ(θ) is a normalizing constant (often intractable);
h(·) depends on x only.
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Likelihood Methods for ERGMs

Likelihood methods are more complex than exponential
family structure might suggest.
Pseudo-estimation using independent logistic regressions,
one per node.
Can get MLEs via MCMC.
Problem of degeneracy or near degeneracy:

MLEs don’t exist—maximize on the boundary.
Likelihood function is not well-behaved and most
observable configurations are near the boundary.

17 / 34



ERGMs: 7-node Example–I

Set of all graphs on 7 nodes when the sufficient statistics are
the number of edges and number of triangles.

There are 221 = 2,097,152 possible graphs!
There are only 110 different configurations for the
2-dimensional sufficient statistics.
Note: many points on the boundary (including the empty
and complete graph)
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ERGMs: 7-node Example–II

Consider the set of all graphs on 7 nodes when the sufficient
statistics are the no. of edges, no. 2-stars, and no. of triangles.
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Inference for Models for Individuals/Units in Networks

Relevant asymptotics has number of nodes, n→∞.
When there are node-specific parameters, asymptotics are
far more complex.
Maximum likelihood approaches available for ERGMs.
For blockmodels, with constant structure within blocks,
there is asymptotic theory.

Related literature on “community formation” and
“modularity.” Bickel and Chen (2009)
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Pseudo-likelihood for ERGMs

Frank and Strauss (1986) and Strauss and Ikeda (1990),
following ideas of Besag and work on Markov random field
models, considered conditional probability P(Xij = 1|X c

ij )

where X c
ij is the graph after removing edge (i , j).

P(Xij = 1|X c
ij ) =

exp [θ · (T (X+
ij )− T (X−

ij ))]

1 + exp [θ · (T (X+
ij )− T (X−

ij ))]

=
exp [θ · δ(X c

ij )]

1 + exp [θ · δ(X c
ij )]

where X+
ij and X−

ij represent graphs setting Xij = 1 or 0,
X c

ij denotes remainder of network , and δ(xc
ij ) is change of

SSs when xij changes from 0 to 1.
This has form of logistic regression model.
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Maximum Pseudo-likelihood Estimation for ERGMs

Pseudo-likelihood treats logistic regression components as
if they were independent and sums over all edges:

lP(θ; x) = θ ·
∑

ij

δ(xc
ij )xij −

∑
ij

log(1 + exp(θT δ(xc
ij ))) (2)

Simple Markov basis structure for pseudo-likelihood.
Fienberg, Petrović, and Rinaldo (unpub.)

Theorem (Yang, Fienberg, and Rinaldo (unpub.))

The existence of the MPLE implies the existence of the MLE.
The converse is false.

Implications:
If we use MPLEs we may act as if the likelihood is
well-behaved when it is not.
Even if MLEs exist, actual values of MPLEs and MLEs can
differ substantially.
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MLE vs. MPLE—7 node Example
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Connecting the Two Graphical Approaches

There is link between graphical models for for variables
and graphical models for networks, not just a common
metaphor.
Frank and Strauss (1986) introduce a pairwise Markov
property for individual-level undirected network models.
Key is the construction of the dual graph.
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The Network Dual Graph

Dual Graph: Set up conditional independence graph,
G∗ = {V ∗,E∗}, whose nodes are edges from original
graph, G = {V ,E}.
Xij and Xi ′j ′ are conditionally independent given the other
r.v.’s Xkl iff they do not share a vertex in G∗ = {V ∗,E∗}.
G is Markov if G∗ contains no edge between disjoint sets
(s, t) and (u, v) in V .
Cliques in a Markov random graph are stars (edges are
1-stars) of various orders and triangles.
If there are no edges in the dual graph G∗, then we
essentially have the beta model.
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Undirected Markov Random Graph Models

Theorem

For homogeneous (exchangeable) graphs, distribution of X
now satisfies the pairwise Markov property iff

Pr{X = x} ∝ exp{
NV−1∑
k=1

θkSk (x) + θτT (x)}

where Sk (x) is no. of k-stars and T (x) is no. triangles.

Many other ERGMs don’t have this property, e.g., those
with alternating k -stars and alternating triangles.
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Directed Markov Random Graph Models

Analogous approach to construction of dual graph for
situation with directed edges.
Now the vertices of G∗ are paired corresponding to dyads
from G.
Cliques are the original dyads, and various stars and
triangular structures.
If model contains no stars or triangles, it reduces to p1.
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Open Problems

Some network models have “nice”, non-degenerate
behavior.

Dyadic independence models such as p1.
Simple blockmodels.
Blockmodels that build on dyadic independence structures.

Question: Are there other ERGMs, and in particular
Markov Random Graph Models, that are “nice”?
Question: Where does decomposability in dual graph fit in?
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Roles for Latent Variables

For graphical models for variables:
Natural for many models, e.g., HMMs.
Arise naturally in Hierarchical Bayesian structures.
Hyperparameters are latent quantities.

For models for individuals/units in networks:
Random effects versions of node-specific models such as
p1.
Arise naturally in hierarchical Bayesian approaches, such
as Mixed Membership Stochastic Blockmodels and latent
space models.

Can also use latent structure to infer network links from
data on variables for individuals, e.g., as in relational topic
models.
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Role of Time/Dynamics

For graphical models for variables:
Time gives ordering to variables and assists in causal
models.
Note distinction between position of underlying “latent”
quantity over time and the actual manifest measurement
associated with it, which is often measured retrospectively.

Dynamic models for individual-based networks:
Continuous-time stochastic process models for event data,
perhaps aggregated into chunks.
Discrete-time transition models, perhaps embedded into
continuous time process, e.g., see Hanneke et al. (2010)
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Drawing Inferences From Subnetworks and Subgraphs

Inferences from Subgraphs
Conditional independence structure allows for local
message passing and inference from cliques and regular
subgraphs when there are separator sets that isolate
components.
Interpretation in terms of GLM regression coefficients
always depends on the other variables in the model.

Inferences from Subnetworks
Most properties observed in subnetworks don’t generalize
to full network, and vice versa, e.g., power laws for degree
distributions.
Problem is dependencies among nodes and boundary
effects for subnetworks.
Missing edges are generally not missing at random, except
for some sampling settings, e.g., see Handcock and Gile
(2010).

The forgoing suggests that we can’t use cross-validation
for all but simplest network models.
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Summary

Two types of settings:
Variables Individuals

Directed a b
Undirected c d

For a and c we use conditional independence ideas to
model probabilistic relations among variables.
for b and d we use graph to represent observed data.

Independence comes into play in network settings only of
dyadic independence.
ERGMs have heuristic appeal but often display degenerate
behavior.
Markov Random Graph models invoke the Markov property
we inherit from more traditional graphical model settings.
Whether something nice flows from Markov Random
Graph structure remains an open issue.
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