ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Importance Sampling to Estimate the Entropy
Function in Graphical Models with Cycles

Mehdi Molkaraie and Hans-Andrea Loeliger
Information and Signal Processing Laboratory ETH Zurich

= 1= =
[] [] []
= =
[ ] [ ] [ ]
= 1= =

Workshop on Graphical Models: The Fields Institute, 16—-18 April 2012



Problem Setting

Let X = {X1,X5,..., Xy} be a set of N binary RV's ie each
with alphabet X = {0, 1}

Let f(x1,2,...,7y) be a nonnegative function f : XV — R

The support of f
Sy={xcx": f(x)>0}

Suppose f(x) factors into several nonnegative “local functions”

each having some subset of {x1,xs,..., 2N} as arguments ie
fl) =] falzr)
ReR
Example:

Suppose N =5 and R = {{1,2,3},{3,4,5}, {5} }
flz) = f{1,2,3}(3317 L2, xs)f{3,4,5}(3337 L4, 375)f{5}(935>



Quantities of Interest

We can define/compute

- A probability mass function p(z) on X as

f(z)
Zy

- The normalization constant, the partition function, Z

Zy= > flx)

reXN

p(x) =

- The marginals of p(x) on R

=) plx)

z\TR
- The entropy function
Z p(x)logy p(x -k, [long(X)]

re XN



Graphical Models: Factor Graphs

We use (Forney) factor graphs [KFLO1] to express factorizations as

f@)= 1] falzr)
ReR
A factor graphs consists of

e nodes (representing factors), and

e edges/half edges (representing variables).
Example 1:

f(x) = fA(ilfl, L2, 5'73>fB<373; L4, 335)f0(335>

Xl f A X3 f B X4
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Factor Graphs : Cloning

If a variable appears in more than two factors, we clone the variable.

fi(x) fo(x) f3(x) = fi(z) fo(2”) fo(2")0(x — 2")d(z — 2”)

Example 2:

f(x) = fa(z1, 22) fB(22, 23) fo (T2, T4)
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Factor Graphs : 2D Model

Example 3:
Sz, an) = H Io(Tr; o)

neighbors (xy, /)
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Cycle-Free Factor Graphs: The Sum-Product Algorithm

If f has a cycle-free factor graph representation, the sum-product
algorithm can compute Z; and the marginals pr(xp) efficiently
(after a finite number of steps).

Ja IB e

Similar algorithms:

The sum-product algorithm on factor graphs.
J. Pearl’s belief propagation algorithm.

Forward /Backward algorithm.
BCJR on trellises.



Cycle-Free Factor Graphs: Sampling & H(X)

Consider
p(x) o< fa(xy, v2) fB(w2, 73) fo (3, 74)

By reparameterization

p<x17 Qj?) p(ﬂfg, 333) p([lﬁg, [l?4>

p(x2) p(3)

p(z) = p(x1) p(w2|z1) p(as|r2) p(T4]23)

p(x) =

In a cycle-free graph
- It is easy to draw samples according to p(x)

- Entropy decomposes

H(X) = H(Xy, Xo)+H (X, X3)+H (X3, Xq)—H(X5)—H(X;3)



Constrained 2D Model with Cycles: Z¢

Consider a constrained 2D model as of size N = m X m
f(x1, ..., zN) = H g(Tk, ()
neighbors (x, /)

O, ika:xgzl

9(@p, x) = {

1, else
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Constrained 2D Model

In this case

Zr = Z f(z) = number of valid configurations = |S¢|

reXN

The entropy rate + H(X) = + log, Z;

Example 4

For a 2 x 2 model
co 10 01 00 OO 10 01
co 00 00 10 01 01 10
The entropy rate is

1
1 log, 7= 0.701 bits/symbol

10



Estimating 1/7¢

Gibbs Sampling

1. Draw samples 21, (%)
2. Compute:
f p—
= B[l =1/Z;
XN

)

.., 2% € 8} according to p(x)

K
1 Z 1
K181 2= 7a)
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Tree-Based Gibbs Sampling

Partition the index set {1,..., N} into two parts (A, B) such that
by fixing x4 or x5 the remaining factor graph is cycle-free.
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Generate samples (:L’S), xg)), (a:f), :L’g)), ... by alternating between

- sampling :Cff) according to p(z4|zp = Cb(g_l)) x f(x4, Cﬁg_l)>

- sampling xg) according to p(zp|ra = xff)) x f(atff), rp)

Mixes faster than Gibbs sampling

12



Tree-Based Estimation of 1/7;

Suppose

Therefore

iy = Z fa(za)

:Zf

—> Modified Gibbs sampler to estimate 1/Z;, by:

A

K- |SfA

where

= Zf(l’ff),xB)

13
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Numerical Example:

Size N = 10 x 10.

Estimated % log Zf vs. number of samples K

0.65
0.64
0.63
062

0.61 I

bits/symbol
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Numerical Example:

Size N =60 x 60.

Estimated % log Zf vs. number of samples K

bits/symbol

0.594

0592 F

0.59

0.588

0.586
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Source/Channel Models with Cycles

- Channel output Y and channel input X
with two-dimensional factor graph for p(z) (up to a scale factor)

- Memoryless channel p(y|x) = Hi\;lp(yﬂxk)
- Goal: estimating H(Y")
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Estimating the Mutual Information Rate /(X;Y)

The mutual information rate between the input process and the
output process Is

1 1
FIGY) = Z(H(Y) = H(Y|X))

In many cases of interest, H (Y| X) is analytically available eg when
noise is additive white Gaussian (AWGN), independent of the input

N
HY|X)= b log(2meo?)

—> By estimating H(Y'), we will have an estimate of I(X;Y).

18



Source/Channel Models: H(Y)

H(Y)=—E[logp(Y)] ~ —— Z log p(y
Algorithm
1. Create samples yV, ...,y by
a) Generating samples z. .. 2 by simulating the input.
b) Generating yV, ...,y from 2V ... (1) by channel simulation.

2. Estimate p(y\9)) for ¢ =1,2,..., L.

- We can generate input samples at step (1.a) using MCMC.

- We concentrate on step (2): estimating

(Computing p(y")) needs a sum with an exponential number of terms).

19



Estimating p(y(@)

Clearly, p(y(g)) is the partition function of p(z, y(@)

p(y") = plx,y")

reXxXN

We can estimate p(y'¥)) using Gibbs sampling.

We also have

p(y") = > pla)py"|z)

re XN

= E [p(y""]X)]

But ...

20



Estimating p(y(?)

Previous method has slow/erratic convergence at SNR 2> —4 dB.

L

0'2

SNR = 10logy(

Analogy with statistical physics: Z = Z e E(s)/kBT

High temperature (easy) <= Low SNR
Low temperature (hard) <= High SNR

Let us define

A

filz) = p(z) py"|z)

The desired quantity p(y'")) is Z;,, the partition function of fy(x).



Estimating p(y(?)

Importance sampling

1. Draw samples 21, 22 ... 25 from X according to some
auxiliary probability distribution g(x) = Zigg(a:)

2. Compute

~~

o1
=R 2 e

= fa®)
k=1

AN

—> E(R) = Zf/Zg.
One (obvious) choice for g(x) is
g(z) £ f(z)*, for 0<a<1

With this choice, g(x) and f(x) have the same factor graph structure.

22



Estimating p(y'"))
Use J parallel versions of importance sampling as
For 7 =0,1,...,J let

A

gj(x) = f(x)"
with) <oy <...<a; <ay=1.
Here Z,, = Z; and

Zr _ZnZy Lo
ZgJ Zgl Zg2 ZgJ

Multilayer importance sampling
1. Fory=1,2...,J compute Zgj_l/Zgj by importance sampling.

J
2. Use H R; as an estimate of Z;/Z, , since E(R;) = Zgi ]2y,
j=1



Estimating p(y)): Remarks

Algorithm
1.Foryj=1,2,...,.J compute Zgj_l/Zgj by importance sampling.

J
2. Use H R; as an estimate of Zi|Zy,.
j=1

Estimating Z,, easier than Zy = High temperature.
If .J is large, g;(z) is a good approximation of g;_;(x), at each layer j.
Larger values of J are required for higher values of SNR.

Some choices of {ay, ..., } might result in faster convergence.

Similar ideas: Annealed importance sampling [Neal98|, Equilibrium
free energy differences [Jarzynski97].

24



Numerical Example: /(X;Y) at zero dB

Channel size N = 24 x 24.
AWGN channel, p(x) uniform over valid configurations, and J = 4.

Estimated information rate at zero dB vs. number of samples L.

0.44 , ,
B e e .

0.36

bits/symbol

0.32 p~

0.28

0.24 i i
1 10 100 500

Number of Samples



Numerical Example: 1(X;Y) vs. SNR

Channel size N =24 x 24.
AWGN channel, p(x) uniform over valid configurations.

Estimated i.u.d. information rate vs. SNR

0.7 ! ! ! ! ! ! ! !

e e S e S e

e e e

bits/symbol

e
‘ estifnated I(X, Y)
02 b

fromprewousshde rrrrrrrrrrrrrrrrr .
T e e
O | | | | | | | |
-10 -8 -6 -4 -2 0 2 4 6 8
SNR [dB]
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Concluding Remarks

We proposed a sampling-based method to estimate the entropy of
the input/output process of source/channel models, (in particular)
information rates of 2D source/channel models:

Sy XL S, XL S XL S,
AT T T

N

p(x,y, S) = p(31> P(fﬂk,yk, 5k+1|3k>
k=1

Shannon-McMillan Theorem:
For a finite-valued ergodic process { Xx}

1
_Nlogp(Xl, Xo,...,Xy) — H with probability 1

Papers available online: http://people.ee.ethz.ch/~loeliger
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Thank You!
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Other Constraints

e DC-free (Spectral-Null Constraints)
Bipolar {—1, 41} alphabet, number of +1's and —1's are equal.

e No Isolated Bit. Bits agree with at least one of their neighbors.

e Channels with prescribed number of 1 and 0. Number of 1's in
each row/column is at most n/2.

(Memory coding for limiting current).

29



RLL Constraints Applications

Track-oriented magnetic recording (1D): in DVDs, hard disks, to
reduce interference, improve synchronization, time-control, etc.

Page-oriented magnetic recording (2D): in holograhic memory, to
Increase capacity per surface.

30



Noiseless Constrained 1D Channels

Consider a 1D (1, 00)-RLL constraint

N
f(xh SR ,IN) — Hgk<xk—17 CUk)
k=2

Zy=> f@)=> 1] 9or@r1, )

reX reX k=2

Computing Z; is straightforward

X9 Xk X, Xk+1

gk—1 gk Jk+1

with sum-product message passing on a cycle-free factor graph.

Other approaches: combinatorial and algebraic [Shannon438].

31



Capacity of 1D (1, 00)-RLL

1-D (1, 00)-RLL means adjacent bits can not both have value 1.

o N =1, Z =2, valid sequences: 0, 1
o N =2, Z/ =3, valid sequences: 00, 10, 01, not: 11
e NV =3, Z =5, valid sequences: 000, 100, 010, 001, 101.

e Valid sequences of length NV: OE or 10$l
N-1 N=2
Z(N)=Z(N—-1)+ Z(N —2)
Easy to prove

Z(N) g 1++/5

O = Jim log

~ (.6942 bi
5 Aim i 0.6942 bits

In statistical physics: transfer matrix method.

32



1D Numerical Approach

e By increasing the size of the factor graph

N | Z(N) |+logy, Z(N)
1 2 1

2 3 0.79

3 5 0.77

4 8 0.75

5 13 0.74

10 | 144 0.72
1001 9 x 10% 0.70
400 |5 x 10% 0.69

We know

C>) = 0.6942 bits



Bounds for Noiseless Constrained 2D Channels

In 2D, C is known (tightly bounded) only for a few special cases:

e For 2D (1, 0o )-RLL, [CW98]
0.587891... < Uy < 0.587891...
e For 2D (d, k)-RLL, [KZ00]
Co=0 & k=d+1

We propose a general method based on Gibbs sampling
to compute a Monte Carlo estimate of the capacity of noiseless
2D RLL constraints.
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Sampling from Cycle-Free Factor Graphs

(demonstrated for Markov chains)

n

Sampling from p(x1,...,z,) = p(x1) Hp(:):k|a:k_1) is straightforward.
k=2

What if p(xq,...,2,) x Hgk(a:k_l,xk) ?
k=2

Xk_g Xk:—l Xk Xk+1

gk—1 9k Jk+1

gi(Tp—1, z1) Pox, (k)
H
ILLXk—1(x/€—1)

Reparameterize using  p(zp|x, 1) =
with sum-product messages .

—> “backward filtering forward sampling” (or the other way round)

35



Estimating H(Y)

In the following, we consider

e Source/Channel models with the input process X and the
output process Y .

We are primarily interested in

e Estimating H(Y') in source/channel models where Y is a noisy
observation of X.

X Xy X3 X4

14 14 14
W



Source/Channel Models: H(Y)

Suppose the input process of the source/channel model is X and
the output process is Y.

We want to compute
H(Y)=—-Ellogp(Y)| = —— Z log p(y

for samples yM. @) ...y from p(y)

Algorithm
1. Create samples yV), ... y&) by
a) Generating samples 21, ..., 2" by simulating the input.
b) Generating y Wy from 2L D) by channel simulation.

2. Estimate p(y\9)) for ¢ =1,2,..., L.

37



Cycle-Free Source/Channel Models: p(y)

-Hidden Markov models

X4 X5 X3 X4
U R
In this case
N
p(x,y) = plz1) Hp(ajk+1> Yrlzr)
k=1
p(y") = Y plzy")
reXx N

-Memoryless source/channel models

p(z,y) = plx) | [ plyslzi)

k=1

py")y = > plx,y")

reXN
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