
1

Importance Sampling to Estimate the Entropy
Function in Graphical Models with Cycles

Mehdi Molkaraie and Hans-Andrea Loeliger

Information and Signal Processing Laboratory ETH Zurich

= = =

= = =

= = =

Workshop on Graphical Models: The Fields Institute, 16–18 April 2012

2

Problem Setting

Let X = {X1, X2, . . . , XN} be a set of N binary RV’s ie each
with alphabet X = {0, 1}

Let f (x1, x2, . . . , xN) be a nonnegative function f : XN → R

The support of f

Sf = {x ∈ XN : f (x) > 0}

Suppose f (x) factors into several nonnegative “local functions”
each having some subset of {x1, x2, . . . , xN} as arguments ie

f (x) =
∏
R∈R

fR(xR)

Example:
Suppose N = 5 and R =

{
{1, 2, 3}, {3, 4, 5}, {5}

}
f (x) = f{1,2,3}(x1, x2, x3)f{3,4,5}(x3, x4, x5)f{5}(x5)

3

Quantities of Interest

We can define/compute

- A probability mass function p(x) on XN as

p(x) =
f (x)

Zf

- The normalization constant, the partition function, Zf

Zf =
∑

x∈XN

f (x)

- The marginals of p(x) on R

pR(xR) =
∑
x\xR

p(x)

- The entropy function

H(X) = −
∑

x∈XN

p(x) log2 p(x) = −Ep

[
log2 p(X)

]

4

Graphical Models: Factor Graphs

We use (Forney) factor graphs [KFL01] to express factorizations as

f (x) =
∏
R∈R

fR(xR)

A factor graphs consists of

• nodes (representing factors), and

• edges/half edges (representing variables).

Example 1:

f (x) = fA(x1, x2, x3)fB(x3, x4, x5)fC(x5)

X1
fA X3

fB X4

X2 X5

fC

5

Factor Graphs : Cloning

If a variable appears in more than two factors, we clone the variable.

f1(x)f2(x)f3(x) = f1(x)f2(x
′)f3(x

′′)δ(x− x′)δ(x− x′′)

Example 2:

f (x) = fA(x1, x2)fB(x2, x3)fC(x2, x4)

X1
fA X2

=
X2

fC X4

X2

fB

X3

6

Factor Graphs : 2D Model

Example 3:

f (x1, . . . , xN) =
∏

neighbors (xk, x`)

gk,`(xk, x`)

=
Xk =

Xk X` =
X`

gk,`

=

Xk X`

= = = =

= = = =

= = = =

7

Cycle-Free Factor Graphs: The Sum-Product Algorithm

If f has a cycle-free factor graph representation, the sum-product
algorithm can compute Zf and the marginals pR(xR) efficiently
(after a finite number of steps).

X1
fA

X2
fB

X3
fC

X4

Similar algorithms:

The sum-product algorithm on factor graphs.
J. Pearl’s belief propagation algorithm.
Forward/Backward algorithm.
BCJR on trellises.

8

Cycle-Free Factor Graphs: Sampling & H(X)

Consider
p(x) ∝ fA(x1, x2)fB(x2, x3)fC(x3, x4)

By reparameterization

p(x) =
p(x1, x2) p(x2, x3) p(x3, x4)

p(x2) p(x3)

p(x) = p(x1) p(x2|x1) p(x3|x2) p(x4|x3)

In a cycle-free graph

- It is easy to draw samples according to p(x)

- Entropy decomposes

H(X) = H(X1, X2)+H(X2, X3)+H(X3, X4)−H(X2)−H(X3)

9

Constrained 2D Model with Cycles: Zf

Consider a constrained 2D model as of size N = m×m

f (x1, . . . , xN) =
∏

neighbors (xk, x`)

g(xk, x`)

g(xk, x`) =

{
0, if xk = x` = 1
1, else

= = = =

= = = =

= = = =

= = = =

10

Constrained 2D Model

In this case

Zf =
∑

x∈XN

f (x) = number of valid configurations = |Sf |

The entropy rate 1
NH(X) = 1

N log2 Zf

Example 4

For a 2× 2 model

0 0 o 1 0 o 0 1 o 0 0 o 0 0 o 1 0 o 0 1
0 0 0 0 0 0 1 0 0 1 0 1 1 0

The entropy rate is

1

4
log2 7 = 0.701 bits/symbol

11

Estimating 1/Zf

Gibbs Sampling

1. Draw samples x(1), x(2), . . . , x(K) ∈ Sf according to p(x)

2. Compute:

Γ̂ =
1

K·|Sf |

K∑
k=1

1

f (x(k))

⇒ E[Γ̂] = 1/Zf

XN

Sf

12

Tree-Based Gibbs Sampling

Partition the index set {1, . . . , N} into two parts (A, B) such that
by fixing xA or xB the remaining factor graph is cycle-free.

= = = =

= = = =

= = = =

= = = =

A A
'

&

$

%

B
'

&

$

%

B

Generate samples (x
(1)
A , x

(1)
B), (x

(2)
A , x

(2)
B), . . . by alternating between

- sampling x
(k)
A according to p(xA|xB = x

(k−1)
B) ∝ f (xA, x

(k−1)
B)

- sampling x
(k)
B according to p(xB|xA = x

(k)
A) ∝ f (x

(k)
A , xB)

Mixes faster than Gibbs sampling

13

Tree-Based Estimation of 1/Zf

Suppose

fA(xA)
4
=

∑
xB

f (xA, xB)

Therefore

ZfA
=

∑
xA

fA(xA)

= Zf

=⇒ Modified Gibbs sampler to estimate 1/ZfA
by:

Γ̂A =
1

K·|SfA
|

K∑
k=1

1

fA(x
(k)
A)

where
fA(x

(k)
A) =

∑
xB

f (x
(k)
A , xB)

14

Γ̂A =
1

K|SfA
|

K∑
k=1

1

fA(x
(k)
A)

Γ̂B =
1

K|SfB
|

K∑
k=1

1

fB(x
(k)
B)

= = = =

= = = =

= = = =

'

&

$

%

'

&

$

%
= = = =

15

Numerical Example:

Size N = 10× 10.

Estimated 1
N log Ẑf vs. number of samples K

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 1 10 100 1000 10000 100000 1e+06 1e+07

bi
ts

/s
ym

bo
l

Number of Samples

16

Numerical Example:

Size N = 60× 60.

Estimated 1
N log Ẑf vs. number of samples K

 0.586

 0.588

 0.59

 0.592

 0.594

 1 10 100 1000 10000 100000 1e+06 1e+07

b
it
s
/s

y
m

b
o

l

Number of Samples

17

Source/Channel Models with Cycles

- Channel output Y and channel input X
with two-dimensional factor graph for p(x) (up to a scale factor)

- Memoryless channel p(y|x) =
∏N

k=1 p(yk|xk)

- Goal: estimating H(Y)

=
ZZ

ZZ
Y1

X1 =
ZZ

ZZ
Y2

X2 =
ZZ

ZZ
Y3

X3 =
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

18

Estimating the Mutual Information Rate I(X ; Y)

The mutual information rate between the input process and the
output process is

1

N
I(X ; Y) =

1

N

(
H(Y)−H(Y |X)

)
In many cases of interest, H(Y |X) is analytically available eg when
noise is additive white Gaussian (AWGN), independent of the input

H(Y |X) =
N

2
log(2πeσ2)

=⇒ By estimating H(Y), we will have an estimate of I(X ; Y).

19

Source/Channel Models: H(Y)

H(Y) = −E [log p(Y)] ≈ − 1

L

L∑
`=1

log p(y(`))

Algorithm

1. Create samples y(1), . . . , y(L) by

a) Generating samples x(1), . . . , x(L) by simulating the input.

b) Generating y(1), . . . , y(L) from x(1), . . . , x(L) by channel simulation.

2. Estimate p(y(`)) for ` = 1, 2, . . . , L.

- We can generate input samples at step (1.a) using MCMC.

- We concentrate on step (2): estimating

p(y(`)) =
∑

x∈XN

p(x, y(`))

(Computing p(y(`)) needs a sum with an exponential number of terms).

20

Estimating p(y(`))

Clearly, p(y(`)) is the partition function of p(x, y(`))

p(y(`)) =
∑

x∈XN

p(x, y(`))

We can estimate p(y(`)) using Gibbs sampling.

We also have

p(y(`)) =
∑

x∈XN

p(x)p(y(`)|x)

= E
[
p(y(`)|X)

]
But ...

21

Estimating p(y(`))

Previous method has slow/erratic convergence at SNR & −4 dB.

SNR
4
= 10 log10(

1

σ2
)

Analogy with statistical physics: Z =
∑

s

e−E(s)/kBT

High temperature (easy) ⇐⇒ Low SNR
Low temperature (hard) ⇐⇒ High SNR

Let us define

f`(x)
4
= p(x) p(y(`)|x)

The desired quantity p(y(`)) is Zf`
, the partition function of f`(x).

22

Estimating p(y(`))

Importance sampling

1. Draw samples x(1), x(2), . . . , x(K) from XN according to some
auxiliary probability distribution q(x) = 1

Zg
g(x),

2. Compute

R̂ =
1

K

K∑
k=1

f (x(k))

g(x(k))

=⇒ E(R̂) = Zf/Zg.

One (obvious) choice for g(x) is

g(x)
4
= f (x)α, for 0 < α < 1

With this choice, g(x) and f (x) have the same factor graph structure.

23

Estimating p(y(`))

Use J parallel versions of importance sampling as
For j = 0, 1, . . . , J let

gj(x)
4
= f (x)αj

with 0 < αJ < . . . < α1 < α0 = 1.

Here Zg0 = Zf and

Zf

ZgJ

=
Zg0

Zg1

Zg1

Zg2

· · ·
ZgJ−1

ZgJ

Multilayer importance sampling

1. For j = 1, 2 . . . , J compute Zgj−1
/Zgj

by importance sampling.

2. Use
J∏

j=1

R̂j as an estimate of Zf/ZgJ
, since E(R̂j) = Zgj−1

/Zgj

24

Estimating p(y(`)): Remarks

Algorithm

1. For j = 1, 2, . . . , J compute Zgj−1
/Zgj

by importance sampling.

2. Use
J∏

j=1

R̂j as an estimate of Zf/ZgJ
.

Estimating ZgJ
easier than Zf =⇒ High temperature.

If J is large, gj(x) is a good approximation of gj−1(x), at each layer j.

Larger values of J are required for higher values of SNR.

Some choices of {α0, . . . , αJ} might result in faster convergence.

Similar ideas: Annealed importance sampling [Neal98], Equilibrium
free energy differences [Jarzynski97].

25

Numerical Example: I(X ; Y) at zero dB

Channel size N = 24× 24.
AWGN channel, p(x) uniform over valid configurations, and J = 4.

Estimated information rate at zero dB vs. number of samples L.

 0.24

 0.28

 0.32

 0.36

 0.4

 0.44

 1 10 100 500

b
it

s/
sy

m
b

o
l

Number of Samples

26

Numerical Example: I(X ; Y) vs. SNR

Channel size N = 24× 24.
AWGN channel, p(x) uniform over valid configurations.

Estimated i.u.d. information rate vs. SNR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-10 -8 -6 -4 -2 0 2 4 6 8

b
it

s/
sy

m
b
o
l

SNR [dB]

@@I

estimated I(X; Y)

from previous slide

27

Concluding Remarks

We proposed a sampling-based method to estimate the entropy of
the input/output process of source/channel models, (in particular)
information rates of 2D source/channel models:

S1 S2 S3 S4 . . .
X1 X2 X3

y
(`)
1 y

(`)
2 y

(`)
3

p(x, y, s) = p(s1)

N∏
k=1

p(xk, yk, sk+1|sk)

Shannon-McMillan Theorem:
For a finite-valued ergodic process {XN}

− 1

N
log p(X1, X2, . . . , XN)→ H with probability 1

Papers available online: http://people.ee.ethz.ch/∼loeliger

28

Thank You!

29

Other Constraints

• DC-free (Spectral-Null Constraints)
Bipolar {−1, +1} alphabet, number of +1’s and−1’s are equal.

• No Isolated Bit. Bits agree with at least one of their neighbors.

• Channels with prescribed number of 1 and 0. Number of 1’s in
each row/column is at most n/2.

(Memory coding for limiting current).

30

RLL Constraints Applications

Track-oriented magnetic recording (1D): in DVDs, hard disks, to
reduce interference, improve synchronization, time-control, etc.

Page-oriented magnetic recording (2D): in holograhic memory, to
increase capacity per surface.

31

Noiseless Constrained 1D Channels

Consider a 1D (1,∞)-RLL constraint

f (x1, . . . , xN) =

N∏
k=2

gk(xk−1, xk)

Zf =
∑
x∈X

f (x) =
∑
x∈X

N∏
k=2

gk(xk−1, xk)

Computing Zf is straightforward

. . .
Xk−2

gk−1

Xk−1

gk

Xk

gk+1

Xk+1 . . .

with sum-product message passing on a cycle-free factor graph.

Other approaches: combinatorial and algebraic [Shannon48].

32

Capacity of 1D (1,∞)-RLL

1-D (1,∞)-RLL means adjacent bits can not both have value 1.

• N = 1, Z = 2, valid sequences: 0, 1

• N = 2, Z = 3, valid sequences: 00, 10, 01, not: 11

• N = 3, Z = 5, valid sequences: 000, 100, 010, 001, 101.

• Valid sequences of length N : 0 ︸ ︷︷ ︸
N−1

or 10 ︸ ︷︷ ︸
N−2

Z(N) = Z(N − 1) + Z(N − 2)

Easy to prove

C(1,∞)
∞ = lim

N→∞

log2 Z(N)

N
= log2

1 +
√

5

2
≈ 0.6942 bits

In statistical physics: transfer matrix method.

33

1D Numerical Approach

• By increasing the size of the factor graph

N Z(N) 1
N log2 Z(N)

1 2 1
2 3 0.79
3 5 0.77
4 8 0.75
5 13 0.74
10 144 0.72
100 9× 1020 0.70
400 5× 1083 0.69

We know
C

(1,∞)
1D = 0.6942 bits

34

Bounds for Noiseless Constrained 2D Channels

In 2D, C∞ is known (tightly bounded) only for a few special cases:

• For 2D (1,∞)-RLL, [CW98]

0.587891... ≤ C∞ ≤ 0.587891...

• For 2D (d, k)-RLL, [KZ00]

C∞ = 0 ⇔ k = d + 1

We propose a general method based on Gibbs sampling
to compute a Monte Carlo estimate of the capacity of noiseless
2D RLL constraints.

35

Sampling from Cycle-Free Factor Graphs

(demonstrated for Markov chains)

Sampling from p(x1, . . . , xn) = p(x1)

n∏
k=2

p(xk|xk−1) is straightforward.

What if p(x1, . . . , xn) ∝
n∏

k=2

gk(xk−1, xk) ?

. . .
Xk−2

gk−1

Xk−1

gk

Xk
�

gk+1

Xk+1
�

. . .

Reparameterize using p(xk|xx−1) =
gk(xk−1, xk)

←−µXk
(xk)

←−µXk−1
(xk−1)

with sum-product messages ←−µ .

=⇒ “backward filtering forward sampling” (or the other way round)

36

Estimating H(Y)

In the following, we consider

• Source/Channel models with the input process X and the
output process Y .

We are primarily interested in

• Estimating H(Y) in source/channel models where Y is a noisy
observation of X.

X1 X2 X3 X4 . . .

y
(`)
1 y

(`)
2 y

(`)
3

37

Source/Channel Models: H(Y)

Suppose the input process of the source/channel model is X and
the output process is Y.

We want to compute

H(Y) = −E [log p(Y)] ≈ − 1

L

L∑
`=1

log p(y(`))

for samples y(1), y(2), . . . , y(L) from p(y).

Algorithm

1. Create samples y(1), . . . , y(L) by

a) Generating samples x(1), . . . , x(L) by simulating the input.

b) Generating y(1), . . . , y(L) from x(1), . . . , x(L) by channel simulation.

2. Estimate p(y(`)) for ` = 1, 2, . . . , L.

38

Cycle-Free Source/Channel Models: p(y)

-Hidden Markov models

X1 X2 X3 X4 . . .

y
(`)
1 y

(`)
2 y

(`)
3

In this case

p(x, y) = p(x1)

N∏
k=1

p(xk+1, yk|xk)

p(y(`)) =
∑

x∈XN

p(x, y(`))

-Memoryless source/channel models

p(x, y) = p(x)

N∏
k=1

p(yk|xk)

p(y(`)) =
∑

x∈XN

p(x, y(`))

