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Implications of Models
It is common (especially in causal settings) to hypothesise models based
on DAGs:

Visit to Asia

Tuberculosis

Either

Cancer

X-ray

Smoking

Bronchitis

Dyspnoea

This encodes the assumption that the joint distribution factorises as:

p(A) p(T |A) p(S) p(C |S) p(B |S) p(E |T ,C ) p(X |E ) p(D |E ,B).
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d-Separation

The factorisation criterion

p(xV ) =
∏
v∈V

p(xv | xpaG(v))

is equivalent to the global Markov property:

A d-separated from B by C =⇒ XA ⊥⊥ XB |XC [P].

In particular, all constraints on DAGs are conditional independences.
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Marginalisation
We often cannot observe all variables.

Consider a medical trial on pairs
of siblings:

T1

O1

U

O2

T2

Ti (randomised) treatment for sibling i = 1, 2

Oi recorded outcome for sibling i

U unmeasured confounding (genetics etc.)

Can only observe independences which don’t involve U:

T1 ⊥⊥ O2,T2 T2 ⊥⊥ O1,T1.

Is this all?
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Example 1: Verma Graph

Consider the following DAG on 5 variables (Verma and Pearl, 1990).

X1 X2 X3 X4

U

X1 ⊥⊥ U, X3 ⊥⊥ X1,U |X2, X4 ⊥⊥ X1,X2 |X3,U.

If U is latent, we can only observe X3 ⊥⊥ X1 |X2.

But if we add an arrow X1 → X4, we still have X3 ⊥⊥ X1 |X2.
So can we detect that X1 6→ X4?
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The Verma Constraint

X1 X2 X3 X4

U

f (x1, x2, x3, x4) =

∫
f (u) f (x1) f (x2 | x1, u) f (x3 | x2) f (x4 | x3, u) du

= f (x1) f (x3 | x2)

∫
f (u) f (x2 | x1, u) f (x4 | x3, u) du

= f (x1) f (x3 | x2) f ∗(x2, x4 | x1, x3).

Note that ∫
f ∗(x2, x4 | x1, x3) dx2 = f (x4 | x3)

is independent of x1, precisely because X1 6→ X4.

This is the Verma constraint, and provides a non-parametric test for the
presence of X1 → X4.
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Example 2: Instrumental Variables

Z X Y

U

Conditional independences all involve U, and so can’t be observed.

Can we detect that Z 6→ Y ? Pearl (1995) showed that for discrete Z , X
and Y ,

max
x

∑
y

max
z

P(X = x , Y = y , |Z = z) ≤ 1.

So, for example

P(X = 0, Y = 0 |Z = 0) + P(X = 0, Y = 1 |Z = 1) ≤ 1.

Inequalities for the discrete IV model can be derived using linear
programs (Porta, cdd).
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Example 3: Unrelated Confounding

Z X Y

U2U1

Again there are no independences (in fact this contains the IV model).

Computational algebra doesn’t seem to be useful here.

However, there are inequalities (as we will see).
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So...

This raises the following question:

what constraints does a DAG with latent variables imply in general?

We know this is a very hard problem (even for IV model).

Perhaps easier:

can we find an equivalence class of these models?

what graphs do we need to represent these models?

12 / 37



So...

This raises the following question:

what constraints does a DAG with latent variables imply in general?

We know this is a very hard problem (even for IV model).

Perhaps easier:

can we find an equivalence class of these models?

what graphs do we need to represent these models?

12 / 37



So...

This raises the following question:

what constraints does a DAG with latent variables imply in general?

We know this is a very hard problem (even for IV model).

Perhaps easier:

can we find an equivalence class of these models?

what graphs do we need to represent these models?

12 / 37



Prior Work

Conditional independences from marginalised DAGs can be captured by
larger classes of graphs (ADMGs, summary graphs, MC graphs, LMGs,
...).

Richardson et al. (2012) deal with the same problem but also encodes
Verma constraints (nested Markov property) with ADMGs.

Pearl (1995) first gave inequality constraints for IV model. Bonet (2001)
used linear programming to derive tight bounds.
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Simplifications

We will consider marginalised DAGs where no assumption is made about
the hidden variables.

It turns out that we need not consider arbitrarily large numbers of latents.

Simplification 1. Latents with no children can be ignored.

X1

X2

U

W

X3

M
=

X1

X2

U

X3
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Simplifications

Simplification 2. Latents with parents can be transformed.

X1 X2

U

Y2Y1 Y3

M
=

X1 X2

Y2Y1 Y3

U ′

Hence we only need to consider latents with no parents.

Of course this is not true if we assume, e.g. latents are binary!
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Simplifications

Simplification 3. If U,W are latent with chG(W ) ⊆ chG(U), then we
don’t need W .

X1 X2 X3

U

W

M
=

X1 X2 X3

U
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mDAGs

An mDAG is a DAG over vertices V , together with a collection B of
inclusion maximal subsets of V .

X1

X2

X3

X4

In this case B = {{1, 2, 3}, {2, 4}}.

ADMGs are special case where B only contains subsets of size 2.
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ADMGs are not sufficient

In general we need to distinguish between {1, 2, 3} and {1, 2}, {1, 3},
{2, 3}.

X1

X2

X3 X1

X2

X3

The model on the right is not saturated. Still true if we dichotomise.
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Complete ‘Markov’ Property

Given an mDAG G and statespace XV , want to find M(G,XV ), the
collection of distributions which could be generated from the mDAG.

More precisely: with every mDAG G we can associate a DAG Ḡ which
includes those hidden variables U.

X1

X2

X3

X4

U2

U1

Then P ∈M(G,XV ) if there exists some product space XU (and
σ-algebra) and some distribution P̄ ∈M(Ḡ,XV ×XU) such that P is the
V -margin of P̄.
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Example

Instrumental Variables mDAG G:

Z X Y

Let XV = {0, 1}3; then Pearl (1995) shows

M(G,XV ) ⊆

{
P

∣∣∣∣∣max
x

∑
y

max
z

P(x , y | z) ≤ 1

}
.

With linear programming one can show equality holds (Bonet, 2001).

In the general discrete case (especially for increasing statespace of Z )
these inequalities are not sufficient.
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Instrumental Inequality: Alternative Interpretation

Z X Y

Let X be discrete.

f (x , y | z) =

∫
f (u) f (x | z , u) f (y | x , u) du.

Can think of X as a selector for how Y responds to U. Suppose we turn
off this selection:

f ∗(x , y | z) =

∫
f (u) f (x | z , u) f (y | x = 0, u) du,

so Y behaves as if X = 0.

Clearly Y ⊥⊥ Z [f ∗], and f ∗(0, y | z) = f (0, y | z).

So f (0, y | z) for y , z must be compatible with a distribution under
which Y ⊥⊥ Z . This gives Pearl’s instrumental inequality.
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Applying to Other Graphs

Consider the ‘unrelated confounding’ model.

Z

X

Y

Again no independences; in fact strictly contains IV models on (Z ,X ,Y )
and (Y ,X ,Z ).

But by same argument, probabilities f (0, y , z), must be compatible with
Y ⊥⊥ Z .

So e.g.
(1− f (0, y , z))2 + (1− f (0, 1− y , 1− z))2 ≥ 1.
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Skeleton

Call the skeleton of an mDAG the undirected graph given by joining any
vertices in the same edge.

X1

X2

X3

X4

⇒

X1

X2

X3

X4
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Distinction by Skeleton

The instrumental inequality can be generalised for discrete graphs.

Theorem

Let G, G′ be mDAGs and XV a discrete statespace. If

G′ ⊆ G; and

G′ and G have different skeletons,

then M(G′,XV ) (M(G,XV ). In other words, a constraint is always
induced.

The additional constraints could be independences, Verma constraints, or
inequalities (or something else!).

The proof of this result is constructive (in that it produces inequalities).
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Causal Effects

Corollary

We can derive non-trivial inequalities for an Average Controlled Direct
Effect (ACDE) between any Z → Y as long as Z and Y are not directly
confounded.

Z

X

Y

Unrelated confounding model, e.g.

ACDE(x) ≤ 1 + P(Y = 1, x , z)− P(x)

P(x , z)
− P(Y = 1, x , 1− z)

1− P(x , z)

for each x , z .
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Model Equality

Lemma

Let G′ and G be ADMGs, with G′ a subgraph of G. Then
M(G′) ⊆M(G)

Theorem
Let G be an ADMG with an edge a↔ b such that

paG(a) ⊆ paG(b);

spG(a) = {b}.
Then if G′ is equal to G except that a→ b and a 6↔ b, we have
M(G′) =M(G).
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Examples (1)

X Y

Z W

m-separation implies X ,Z ⊥⊥ Y ... but we get precisely this without the
bidirected edge anyway.

29 / 37



Examples (1)

X Y

Z W

m-separation implies X ,Z ⊥⊥ Y ...

but we get precisely this without the
bidirected edge anyway.

29 / 37



Examples (1)

X Y

Z W

m-separation implies X ,Z ⊥⊥ Y ... but we get precisely this without the
bidirected edge anyway.

29 / 37



Examples (2)

X Y

Z W

The edge Z ↔W fulfils the conditions of the theorem.
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Examples (3)

X Y

Z W

Other graphs can merely be simplified.

Here we have X ⊥⊥W ,Y and Y ⊥⊥ X ,Z as well as Bell’s inequalities.
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Models on Three Observed Variables

40 unlabelled ADMGs on 3 variables (48 mDAGs).

⊥⊥ {X ,Y ,Z} complete independence 1
X ⊥⊥ Y ,Z joint independence 3
X ⊥⊥ Y |Z conditional independence 5
X ⊥⊥ Y marginal independence 6

IV(X ,Y ,Z ) instrumental variable 3
UC(X ,Y ,Z ) unrelated confounding 1

unrestricted 20
3-cycle 1

X Y

Z
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Larger Models

There are 1567 ADMGs over 4 variables. At least 509 are equivalent to a
DAG.

After applying Theorem on equivalence, at most 671 distinct models not
equivalent to DAGs.

Can reduce to 543 by splitting into districts.

33 / 37



Outline

1 Introduction

2 Other Constraints

3 mDAGs

4 Finding Constraints

5 Summary

34 / 37



Summary

We have seen that:

mDAGs provide the most general necessary framework for
representing DAGs under marginalisation (ADMGs are not
sufficient);

Pearl’s IV bounds have a nice interpretation in terms of marginal
independence;

this interpretation leads to constructive bounds for other models;

the absence of an edge in any mDAG can (in principle) be refuted;

consequently causal bounds can be constructed for any
unconfounded variables.
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Questions

Some outstanding questions:

Do equalities other than CI and Verma constraints exist?

How tight can we get the inequalities to be?

How powerful are the inequalities?

What is the complete equivalence class of models?

Are the models smooth?

What about conditioning?
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Thank you!
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d-Separation

A path is a sequence of edges in the graph; vertices may not be repeated.

A path from v to w is blocked by C ⊆ V \ {v ,w} if either

(i) any non-collider is in C :

c c

(ii) or any collider is not in C , nor has descendants in C :

d d

e

Two vertices v and w are d-separated given C ⊆ V \ {v ,w} if all paths
are blocked.
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Bonet’s Inequalities

Suppose Z ternary and X , Y binary for IV model on Z ,Y ,X . Then

p(x0, y1 | z1) + p(x0, y0 | z2) + p(x0, y1 | z0) + p(x1, y1 | z1) + p(x1, y0 | z0) ≤ 2
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ADMGs are not sufficient

Lemma

Let F , G, H be mutually independent σ-algebrae (so that F ⊥⊥ G ∨H
and so on), and let X , Y and Z be random variables such that

(i) X is F ∨ G-measureable;

(ii) Y is G ∨ H-measureable;

(iii) Z is F ∨H-measureable.

Then P(X = Y = Z ) > 1− ε implies

VarX < 3ε.
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