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Two vertex-disjoint cycles 

 
Theorem(Lovasz,1965): A graph G with minimum degree 3 contains 
no two vertex-disjoint cycles if and only if 
o  either G – v is a forest for some vertex v, or 
o  G is a wheel, or 
o  G is K5, or 
o  G – {v,u,w} is edgeless for some triple of vertices v,u,w. 
 
 
 



Two vertex-disjoint odd cycles 

 
Theorem(Slilaty, 2003): If a graph G contains no two vertex-disjoint odd cycles 
then 
o  either G – v is bipartite for some vertex v of G, or 
o  G is K5, or 
o  G can be embedded in a projective plane with all cycles even, or 
o  G can be decomposed into graphs belonging to the above three classes. 



Two linked cycles 

Linked cycles              Petersen family   

Theorem(Robertson, Seymour, Thomas,1995): A graph G does allow 
a linkless embedding in space if and only if G has no minor isomorphic 
a member of the Petersen family. 
 
Theorem(van der Holst, 2003): There exists a polynomial time 
algorithm whether a given embedding has two linked cycles. 
 



Bilinear forms on the edge set 

Let G be an undirected graph. Orient its edges arbitrarily. Given an oriented 
edge e we denote by -e an edge obtained from e by reversing the orientation.  
Let E (G) denote a set of linear combinations of oriented edges of G with integer 
coefficients. (It has the structure of a Z-module.)  
 
Let ¡ be a group and let F : E (G ) x E (G ) → ¡ be a bilinear map. We are 
interested in an algorithm for testing whether there exist two vertex disjoint 
cycles C,D in G such that  

F(C,D) := F(e, f ) ! 0.
f"D#e"C#
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edge e we denote by -e an edge obtained from e by reversing the orientation.  
Let E (G) denote a set of linear combinations of oriented edges of G with integer 
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Examples: 

1)   ¡ = Z, F ´ 1.  C and D are disjoint cycles. 

2)   ¡ = Z2 , F ´ 1. C and D are disjoint odd cycles. 

3)   ¡ = Z, F (s1t1, s2 t2)=1, F ´ 0, otherwise. C and D correspond to a pair 
of paths one joining s1 to t1 and another s2 to t2. 

F(C,D) := F(e, f ) ! 0.
f"D#e"C#



One cycle case 

Let F : E (G ) → ¡ be a linear map.  
 
Question: Does there exist a cycle C in G such that  
 
Let C (G ) denote the cycle space : the span of the characteristic vectors of 
cycles.  
 
Question’: Is F ´ 0 on C (G )? 
 
C (G ) is well understood: 
 

o  It has dimension |E(G)|-|V(G)|+1 if G is connected.  

o  One can efficiently find a basis.  

o  It is determined by constraints:   

F(C) := F(e) ! 0?
e"C#

L(e) = 0 for every v !V (G),
e!"(v )
#  where "(v) denotes the set of edges going out of v.



2-circuits and 2-cycles 

For cycles C and D we can define a map called 2-circuit 
 

XC,D : E (G ) x E (G ) → Z 
 by  
 
 
 
 
 
 
 
 
 

XC,D e,f( ) =
1, e !C,f ! D, or -e !C,"f ! D
"1, -e !C,f ! D, or e !C,"f ! D

0, otherwise.

#

$
%

&
%



2-circuits and 2-cycles 

For cycles C and D we can define a map called 2-circuit 
 

XC,D : E (G ) x E (G ) → Z 
 by  
 
 
 
 
 
 
Let C2(G) denote the span of 2-circuits. (It is a subspace of the space of E(G) x E(G) 
matrices.) Our bilinear form F can be considered as a linear map on this matrix space. 
 
 
 
It is enough to test if F is identically zero on C2(G). 
 
 
 

XC,D e,f( ) =
1, e !C,f ! D, or -e !C,"f ! D
"1, -e !C,f ! D, or e !C,"f ! D

0, otherwise.
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F(M) := F(e,f )M(e,f ). Then F(Xc,d ) = F(C,D).
e,f!E (G)
"



2-circuits and 2-cycles 

A bilinear map L: E(G) x E(G) → Ζ is a 2-cycle if  
 

1)  L(e, f) = 0 whenever e and f share a vertex; 

2)  
 
 
 
3) 
 

Let L2(G) denote the span of 2-cycles. 
 
 

Is it true that L2(G ) = C2(G ) ? 
 
 
 

 

L(e,f ) = 0 for every v !V (G),f ! E(G)
e!"(v )
# , 

where "(v) denotes the set of edges going out of v.

L(f ,e) = 0 for every v !V (G),f ! E(G)
e!"(v )
# .



Kuratowski 2-cycles 

Let L2(G) denote the span of 2-cycles. 
 
Is it true that L2(G )=C2(G )? 
_____________ 
 
Let G = K5. V(G) ={1,2,3,4,5} and let L(ij,kl)=sgn(i,j,k,l,m). (E.g. L(12,35)=sgn(12354)=-1) 
L is the unique (up to rescaling) 2-cycle on K5 . 
  

( sgn(12,34)  + sgn(12,35) = 0 ) 
 
There also exists an essentially unique 2-cycle on K3,3 .  
 
Bilinear forms corresponding to these 2-cycles on subdivisions of K5 and K3,3 in general 
graphs are called Kuratowski 2-cycles. 

 
 
 

 



Main theorem 

 
Theorem(Van der Holst, N., Thomas): In a Kuratowski connected graph 
the space of 2-cycles L2(G ) has a basis consisting of 2-circuits and at most 
one Kuratowski 2-cycle. Moreover, one can find such a basis in polynomial 
time. 
 
 
 
 

 



Main theorem 

 
Theorem(Van der Holst, N., Thomas): In a Kuratowski connected graph 
the space of 2-cycles L2(G ) has a basis consisting of 2-circuits and at most 
one Kuratowski 2-cycle. Moreover, one can find such a basis in polynomial 
time. 
 
 
 
Kuratowski connected: No two subdivisions of K5 and/or K3,3 are separated by 
an ≤3-separation 

 



Linking number as a bilinear form 

 
 
 

 

Regular projection: displays an embedding in R3 as a drawing in the plane with crossings 
where for each crossing we record which edge is going “over” and which is going 
“under”. 
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Linking number as a bilinear form 

 
 
 

 

Regular projection: displays an embedding in R3 as a drawing in the plane with crossings 
where for each crossing we record which edge is going “over” and which is going 
“under”. 
 
Bilinear form:  e 

f 

F(e,f) = 1 

e 

f 

F(e,f) = -1 

C 

D 

F (C,D) = 1-1 = 0 



Linkless embeddings and Kuratowski 2-cycles 

 
 
 

 

Regular projection: displays an embedding in R3 as a drawing in the plane with crossings 
where for each crossing we record which edge is going “over” and which is going 
“under”. 
 
 
 
 
 
 
 
Suppose G admits a linkless embedding. Let F be the linking bilinear form in a regular 
projection of this embedding. Then F  is identically zero on C2(G ) ( F (C,D ) = 0 for any 
two cycles.) But any drawing of K5 or K3,3 contains an odd number of crossings between 
independent edges, so F is non-zero on any Kuratowski 2-cycle. Thus L2(G) ≠ C2(G). 
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Linkless embeddings and Kuratowski 2-cycles 

 
 
 

 

Regular projection: displays an embedding in R3 as a drawing in the plane with crossings 
where for each crossing we record which edge is going “over” and which is going 
“under”. 
 
 
 
 
 
 
 
Suppose G admits a linkless embedding. Let F be the linking bilinear form in a regular 
projection of this embedding. Then F  is identically zero on C2(G ) ( F (C,D ) = 0 for any 
two cycles.) But any drawing of K5 or K3,3 contains an odd number of crossings between 
independent edges, so F is non-zero on any Kuratowski 2-cycle. Thus L2(G) ≠ C2(G). 
 
 
Theorem: Let G be Kuratowski-connected. Then L2(G ) = C2(G ) if and only if G is 
planar or G does not admit a linkless embedding in R3. 
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Open problem 

 
 
 

 

 
 
 
 
 

Pfaffian orientations: It is #P-hard to compute the number of perfect matchings in a 
graph. But if a graph admits a Pfaffian orientation then one can compute it efficiently. 
 
Theorem(N.): A graph has a Pfaffian orientation if and only if it admits a drawing in the 
plane with crossings in which every perfect matching crosses itself even number of 
times. 
 

Can we test if a drawing has this property? 
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Pfaffian orientations: It is #P-hard to compute the number of perfect matchings in a 
graph. But if a graph admits a Pfaffian orientation then one can compute it efficiently. 
 
Theorem(N.): A graph has a Pfaffian orientation if and only if it admits a drawing in the 
plane with crossings in which every perfect matching crosses itself even number of 
times. 
 

Can we test if a drawing has this property? 
 
If F : E(G) x E(G) → Z2  is the crossing bilinear form (F (e, f)=1 if and only if e and f 
cross) then we want to determine whether F(M,M)=0 for every perfect matching M. 
 
It is enough to find a basis of the span of E(G) x E (G)-matrices XM, where  

XM (e , f )=1 if and only if e,f 2 M. 
 

Can this basis be found in polynomial time? 
 
 
 
 



Thank you! 

 
 
 

 
 
 


