
1000X MIP Tricks
Bob Bixby

12 June 2012, Bill Cunningham’s 65th



Reminiscences on Matroids
A Characterization of Ternary 

Matroids



3© 2010 Gurobi Optimization



Outline
 Introduction
◦ Progress in Solving Mixed-Integer Programs

 MIP tricks
◦ Knapsack
◦ Implied integer
◦ Disjoint subtrees
◦ Modular inverse reduction
◦ Markshare

4



A Definition

integerallorsome j

T

x
uxl
bAxtoSubject

xcMinimize




A mixed‐integer program (MIP) is an optimization 
problem of the form

5



Computational Progress in 
Mixed-Integer Programming:

1991-Present

6



1

10

100

1000

10000

100000

0

1

2

3

4

5

6

7

8

9

10

1.2→2.1 2.1→3 3→4 4→5 5→6 6→6.5 6.5→7.1 7.1→8 8→9 9→10 10→11

C
um

ul
at

iv
e 

Sp
ee

du
p

Ve
rs

io
n-

to
-V

er
si

on
 S

pe
ed

up

CPLEX Version-to-Version Pairs

V-V Speedup Cumulative Speedup

Mature Dual 
Simplex: 1994

Mined Theoretical
Backlog: 1998 29530x

Speedups 1991‐2007

7



 Public benchmarks showed that CPLEX 11.0 
and Gurobi 1.0 were roughly equivalent

 Gurobi:  Version-to-version improvements:
◦ Gurobi 1.0 -> 2.0: 2.2X
◦ Gurobi 2.0 -> 3.0: 2.9X (6.4X)
◦ Gurobi 3.0 -> 4.0: 1.3X (8.3X)
◦ Gurobi 4.0 -> 5.0: 1.9X (16.2X)

Gurobi Solver:
Version 1.0 Released May 2009

8



Overall MIP Improvement:  
1991-Present

 Algorithmic Improvement
◦ Factor 29530 x 16.2: 475,000x speedup
◦ Like investing $1 at 92% annual interest for 20 

years.

 Machine Improvement
◦ Factor 2,000x speedup

 Total Improvement
◦ Factor ~109x speedup

9



CPLEX 6.5 – 1997/98:
The Breakthrough  

10



Computational Results III: 78 Models
Before CPLEX 6.5 - not solvable

After CPLEX 6.5 - solvable < 1000 seconds

 Cutting planes          33.3x
 Presolve 7.7x
 Variable selection 2.7x
 Node presolve 1.3x
 Heuristics 1.1x
 Dive probing 1.1x

11



Gurobi MIP Solver



 Branch-and-cut algorithm
 Deterministic shared memory parallel
 Key building blocks
◦ Dual simplex
◦ Cut planes
◦ Heuristics for finding integer-feasible solutions
◦ Presolve
◦ Branch variable selection

 Many tricks

Gurobi MIP Solver

13



 Gomory
 Knapsack cover
 Flow cover
 GUB cover
 MIR
 Clique
 Implied bounds
 Zerohalf
 Mod-k 
 Network
 Submip

Cutting Planes

14



 Rounding
 RINS
 Solution improvement
 Feasibility pump
 Diving
 Alternative optimal solutions with less 

integer infeasibility
 Etc.

Heuristics

15



 Bound strengthening
 Row “analysis”
 Coefficient reduction
 Aggregation
 Clique generation 
 Probing
 Etc.

Presolve

16



 Pseudo costs
 Strong branching
 Reliability branching
 Etc.

Variable Selection Technology

17



MIP Tricks



 P2m2p1m1p0n100 
◦ A 0-1 knapsack in MIPLIB 2010 infeasible set
◦ 100 binary variables (if slack isn’t counted)
◦ rhs = 80424

 Solutions times (from Mittelmann)
◦ Gurobi 4.6:  0.06 sec
◦ CPLEX: 12.3:  671 sec, 12.4: 2.36 sec
◦ XPRESS 7.2.1:  1961sec

 Our trick
◦ Run branch-and-cut for some number of nodes
◦ Check whether it is a special MIP model, like knapsack
◦ Use virtual time (deterministic) spent on B&C vs. 

estimate time of dynamic programming (here 
O(n*rhs))

◦ Use dynamic programming to solve it

Knapsacks

19



 Model b_ball (first version of MIPLIB 2010)
Max   x12
S.t.     x12 – x1 <= 0

………………….
x12 – x11 <= 0
2 x1 - x13 - x14 - x15 - x16 - x17 - x18 - x19 - x20 = 0
…………………
2 x11 - x93 - x94 - x95 - x96 - x97 - x98 - x99 - x100 = 0
x13 + x21 + x29 + x37 + x45 + x53 + x61 + x69 + x77 + x85 + x93 = 5
………………….
x20 + x28 + x36 + x44 + x52 + x60 + x68 + x76 + x84 + x92 + x100 = 5
x1, …, x12 are continuous
x13, …, x100 are binary

Implied Integer, Example

20



 It is easy to see
◦ 2 x1, …, 2 x11 must take integer values
◦ Hence 2 x12 will take integer values
◦ Obj. gcd is 0.5

 The trick of recognizing obj. gcd =0.5 
reduces the solution time from 10000+ 
seconds to 0.01 second

Implied Integer, Example

21



 The trick can be extended to catch many 
more cases

 Recognizing implied integer variables for 
cuts, bound strengthening, obj. gcd and 
etc. is very useful and has significant 
impact on overall performance

Implied Integer

22



 Basic principle of branching:
◦ Feasible regions for child nodes after a branch 

should be disjoint
 Not always the case
 Simple example – integer 

complementarities:
◦ x ≤ 10 b
◦ y ≤ 10 (1-b)
◦ x, y non-negative ints, x ≤ 10, y ≤ 10, b binary
◦ Branch on b: x=y=0 feasible in both children

Disjoint Subtrees

23



 Problem arises when sole purpose of 
branching variable is to bound other 
variables
◦ Otherwise, b=0/b=1 split is typically sufficient 

to make the subtrees disjoint
 Recognizing overlap:
◦ Constraints involving branching variable must be 

redundant after branch
◦ Domains of remaining variables must overlap

Recognizing Subtree Overlap

24



 Simplest way to remove overlap:
◦ Modify variable bound in one subtree

 Integer complementarities example:
◦ x ≤ 10 b
◦ y ≤ 10 (1-b)
◦ Branch on b: x=y=0 feasible in both children

 b=0 child: x = 0, 10 ≥ y ≥ 0
 b=1 child: y = 0, 10 ≥ x ≥ 1

Removing Overlap

25



 Overlap present in several models
◦ 35 out of 510 models in our test set

 Performance impact can be huge
◦ Model neos859080 goes from 10000+ seconds 

to 0.01s
◦ Makes it tough to quote mean improvements 

over a small set
 Median improvement for affected models 

is ~1%

Performance Impact

26



Modular Inverse Reduction

 Consider
◦ a x + b y = c
◦ x, y are integer variables
◦ a, b and c are integers, a > 1
◦ Assume gcd(a,b) = 1
 Otherwise a Euclidean reduction is possible

◦ Observation:  Then x(mod b) and y(mod a) are constants.
 Reduction
◦ Substitute y = a z + d, where d can be computed by 

modular multiplicative inverse
◦ z has a smaller search space than x and y

 General application
◦ Can easily be extended to general “all integer” 

constraints.

27



Modular Inverse Reduction

 Simplex example
◦ Min x + y

s.t. 1913 x + 1867 y = 3618894
x, y ≥ 0, are integral variables

 Reduction
◦ Using modular inverse, you get y = 1913 z + 1009, 

with z ≥ 0
◦ So 1913 x + 3571571 z = 1735091, or

x +       1867 z =  907
◦ With the reductions, presolve solves it, while 

without the reduction it takes 1942 nodes.

28



 Less than 3% models are affected
 Performance impact can be huge
◦ A model from GAMS goes from 10000+ seconds 

to 0.05 seconds
◦ Overall impact is positive, but small

Performance Impact

29



 Models
◦ Less than 100 binary variables
◦ Less than 7 knapsacks
◦ Minimize sum of slacks

 MIPLIB
◦ markshare1 and markshare2 in MIPLIB 2003
◦ markshare_5_0 in MIPLIB 2010

 Cornuejols, Dawande 1998
◦ Use basis reduction to solve 
◦ Branch-and-cut fails to solve markshare1 and 2

Markshare Models

30



Minimize
s1 + s2 + s3 + s4 + s5

Subject To
C1_: s1 + 17 x1 + 75 x2 + 9 x3 + 87 x4 + 58 x5 + 79 x6 + 69 x7 + 37 x8  + 88 x9 + 75 x10 + 45 x11
+ 35 x12  + 73 x13 + 26 x14 + 39 x15 + 78 x16  + 85 x17 + 58 x18 + 72 x19 + 8 x20 + 46 x21 
+ 11 x22 + 55 x23 + 39 x24  + 57 x25 + 96 x26 + 87 x27 + 16 x28 + 27 x29 + 26 x30 + 93 x31 
+ 44 x32  + 79 x33 + 12 x34 + 8 x35 + 95 x36   + 2 x37 + 15 x38 + 38 x39 + 15 x40   = 987

C2_: s2 + 53 x1 + 88 x2 + 43 x3 + 26 x4 + 31 x5 + 77 x6 + 10 x7 + 77 x8 + 71 x9 + 22 x10 + 76 x11 
+ 41 x12 + 65 x13 + 93 x14 + 50 x15 + 69 x16 + 44 x17 + 61 x18 + 58 x19 + 63 x20 + 46 x21 
+ 63 x22 + 13 x23 + 97 x24 + 14 x25 + 45 x26 + 32 x27 + 96 x28 + 36 x29 + 40 x30 + 10 x31 
+ 96 x32 + 99 x33 + 58 x34 + 87 x35 + 15 x36 + 91 x37 + 65 x38 + 6 x39 + 96 x40   = 1111

C3_: s3 + 97 x1 + 79 x2 + 81 x3 + 57 x4 + 28 x5 + 97 x6 + 58 x7 + 44 x8 + 37 x9 + 93 x10 + 2 x11 
+ 77 x12 + 73 x13 + 59 x14 + 43 x15 + 64 x16 + 75 x17 + 6 x18 + 5 x19 + 78 x20 + 71 x21 
+ 12 x22 + 30 x23 + 7 x24 + 69 x25 + 36 x26 + 73 x27 + 19 x28 + 15 x29 + 16 x30 + 84 x31 
+ 55 x32 + 32 x33 + 53 x34 + 43 x35 + 21 x36 + 73 x37 + 59 x39 + 48 x40 = 984

C4_: s4 + 94 x1 + 76 x2 + 12 x3 + x4 + 50 x5 + 85 x6 + 86 x7 + 9 x8 + 86 x9 + 79 x10 + 58 x11 
+ 10 x12 + 83 x13 + 75 x14 + 91 x15 + 51 x16 + 89 x17 + 97 x18 + 57 x19 + 47 x20 + 42 x21 
+ 65 x22 + 88 x23 + 59 x24 + 22 x25 + 100 x26 + 16 x27 + 70 x28 + 70 x29 + 99 x30 + 65 x31 
+ 66 x32 + 85 x33 + 68 x34 + 97 x35 + 33 x36 + 80 x37 + 16 x38 + 87 x39 + 60 x40   = 1262

C5_: s5 + 42 x1 + 99 x2 + 87 x3 + 46 x4 + 24 x5 + 85 x6 + 85 x7 + 74 x8 + 13 x9 + 48 x10 + 79 x11 
+ 50 x12 + 57 x13 + 44 x14 + 3 x15 + 33 x16 + 43 x17 + 58 x18 + 8 x19 + 68 x20 + 59 x21 
+ 23 x22 + 75 x23 + 96 x24 + 87 x25 + 7 x26 + 54 x27 + 38 x28 + 72 x30 + 5 x31 + 2 x32 + 76 x33 
+ 63 x34 + 94 x35 + 55 x36 + 41 x37 + 39 x38 + 19 x39 + 31 x40 = 991

Markshare Model: Markshare_5_0

31



 Simple example
◦ 6 x1 + 7 x2 + 7 x3 +…+7 x29 + 8 x30 + s1 =29 

8 x1 + 7 x2 + 7 x3 +…+7 x29 + 6 x30 + s2 =29
◦ Let fk(u) = first i, ∑{1≤j≤i} akj xj = u is feasible
 f1(6) = 1, f1(13) = 2, f1(14) = 3, f1(20) = 3, …, f1(29) =30
 f2(8) = 1, f2(15) = 2, f2(14) = 3, f2(22) = 3, f(29) = 4, …, f2(23) = 

inf
◦ Try s1 = 0, s2 = 0
 Backwards, start with x30. 
 If x30 = 0, then rhs’s remain 29, but f1(29) =30, so the first 

constraint is infeasible
 If x30 = 1, then for the second constraint, rhs – 6 = 23, but 

f2(23) =inf, so it is infeasible
 It is infeasible for s1 = 0, s2 = 0

◦ Cost to compute fk(u) is O(rhs*n)

Markshare Model

32



 Dynamic programming plus enumerating
◦ Combine 2 to 3 constraints, say 2, and compute 

f(u1, u2) = first i, ∑{1≤j≤i} akj xj = uk is feasible
Operations O(n×b1×b2)

◦ Try ∑sk= 0; ∑sk = 1, sk = 1, k = 0, 1,…
◦ Backward Looping over xj, j = n, …, 1
 At j=i, let 

xj = vj, for j = n, …, i
uk = bk - ∑{i≤j≤n} akj vj

 If f(u1, u2) ≥ i, xj = vj, for j = n, …, i, is infeasible, no 
need to continue to enumerate xj, for j < i

Markshare Models: Our Trick

33



 Trick is implemented in Gurobi 4.5
 Solution times on i7-920, threads=4

Gurobi 4.0      Gurobi 4.6
Markshare_5_0 1347s 0.74s
Markshare1 >7200s 243s
Markshare2 >7200s 5958s

Markshare Models: Computation

34



 MIP tricks
◦ A lot of them are easy to find by just staring at 

models and often are also easy to apply
◦ Many of them are quite effectively on a small 

fraction of models
◦ An interesting challenge for combinatorial 

mathematicians

 Finding MIP tricks is always fun!

Conclusions

35



Thank You


