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Order and stability

In the solution of stiff problems there are many aims such as

o High order
@ Good stability
@ Economical implementation
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o High order
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@ Economical implementation

These attributes are not independent and there may be acthefiiveen
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Order and stability

In the solution of stiff problems there are many aims such as

o High order
@ Good stability
@ Economical implementation

These attributes are not independent and there may be acthefiiveen
them.

Order arrows are a tool for exploring restrictions on orademhethods that are
required to be A-stable.
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Three Runge—Kutta methods

I would like to talk about three special methods which | wallEu,

Im andTh.
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Three Runge—Kutta methods

I would like to talk about three special methods which | wallEu,

Im andTh.
00
s &
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T (m
ol -4 3
11 2 _1
AEE i
6 3 6
1 2 1
6 3 6

Eu is the Euler method,
Im is the Implicit Euler method and
This a Third order implicit Runge—Kutta method

—_— (1)
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The stability functions for the three methods are

R(z)=1+z =exp(z) — 32 +0(2) (Eu)
R(z) = 1%2 =exp(2) + 327 +0(2) (Im)
R@) 1 —expd) + A2 +0F) (T

C1-z+i2- 1B
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Relative stability regions

The stability functions for the three methods are

R(z)=1+z =exp(z) — 32 +0(2) (Eu)
R(z) = 1%2 =exp(2) + 327 +0(2) (Im)
R@) = 1 —expd) + A2 +0F) (T

1-z+32- 128
and the stability regions are
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The Euler method has very poor stability and it should notdelu
with stiff problems.
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The Implicit Euler method is A-stable and it can safely beduséh
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The Implicit Euler method is A-stable and it can safely beduséh
most stiff problems.

The special third order method is not A-stable but it (z1A-stable
with o ~ 88°.

For many problems, such as pure diffusion problems, theiapbad
order method will be completely satisfactory.

—'S""io""is""éo""'zs@



Introduction
Order and stability
Three Runge—Kutta methods

Relative stability regions

The Euler method has very poor stability and it should notdelu
with stiff problems.

The Implicit Euler method is A-stable and it can safely beduséh
most stiff problems.

The special third order method is not A-stable but it (z1A-stable
with o ~ 88°.

For many problems, such as pure diffusion problems, theiapbad
order method will be completely satisfactory.

However, in this talk, we are interested in A-stability aécsnd the
competition this property has with the order of methods.
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Relative stability regions

The “instability region” associated with a stability fuiar R(z) is the
set of points in the complex plane such that

IR(2)| > 1.
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The “instability region” associated with a stability fuiar R(z) is the
set of points in the complex plane such that

|R(z)| > 1.
Therelative instability region is the set such that
lexp(—2)R(z)| > 1.
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set of points in the complex plane such that
|R(z)| > 1.

Therelative instability region is the set such that

lexp(—2)R(z)| > 1.
The stability region and the relative stability regions de¢ined in a
similar way but with> replaced by.
The relative instability region is known as the “order stand the
relative stability region is known as the dual order star.

_S'"'Io""is""éo""'zs@



Introduction
Order and stability
Three Runge—Kutta methods
Relative stability regions

Relative stability regions

The “instability region” associated with a stability fuiar R(z) is the
set of points in the complex plane such that
|R(z)| > 1.

Therelative instability region is the set such that

lexp(—2)R(z)| > 1.
The stability region and the relative stability regions de¢ined in a
similar way but with> replaced by.
The relative instability region is known as the “order stand the
relative stability region is known as the dual order star.

These, and the closely related “order arrows”, are intredun the
next section for thém andTh methods.
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Relative stability regions

The “instability region” associated with a stability fuiar R(z) is the
set of points in the complex plane such that
|R(z)| > 1.
Therelative instability region is the set such that
lexp(—2)R(z)| > 1.
The stability region and the relative stability regions de¢ined in a
similar way but with> replaced by.

The relative instability region is known as the “order stand the
relative stability region is known as the dual order star.

These, and the closely related “order arrows”, are intredun the
next section for thém andTh methods.

Just as order stars are defined in termgeaf—2z)R(2)|, order arrows

are defined as the paths traced out by the points for which-e3R(2)

is real and positive. @)
D O 2




Order stars and order arrows|  Example 1: the implicit Euler method
Example 2: a third order implicit method

Properties of order arrows

© Order stars and order arrows
o Example 1: the implicit Euler method
o Example 2: a third order implicit method
@ Properties of order arrows
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Order stars and order arrows|  Example 1: the implicit Euler method
Example 2: a third order implicit method
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Example: 1 thdm method (order star)

Note the behaviour near zero:

becausdR(z) exp(—2) =1+ 32+0(2),

the dashed red lines are tangent to the order star boundaeyatnd the
angle between these tangents is exanflf.

5 - - T © E 10 15 50 25@



Order stars and order arrows|  Example 1: the implicit Euler method
Example 2: a third order implicit method
Properties of order arrows

Example: 1 thdm method (order star)

Note the behaviour near zero:

becausdR(z) exp(—2) =1+ 32+0(2),

the dashed red lines are tangent to the order star boundaeyatnd the
angle between these tangents is exanflf.

Note also the existence of a pole in the “bounded finger”
R S e — 70 = 55 = (25)
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Example 1: thd m method (order arrows)
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Example 1: thd m method (order arrows)

Note the behaviour near zero:
becauseR(z) exp(—2) = 1+3224+0(Z%), the dashed red lines are tangent to the
order arrows at zero and the angle between these tangemtscityar/2.
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Order stars and order arrows|  Example 1: the implicit Euler method
Example 2: a third order implicit method
Properties of order arrows

Example 1: thd m method (order arrows)

Note the behaviour near zero:
becauseR(z) exp(—2) = 1+3224+0(Z%), the dashed red lines are tangent to the
order arrows at zero and the angle between these tangemtscityar/2.

Up-arrows (increasing values Bfz)e ?) alternate with down-arrows.
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Order stars and order arrows|  Example 1: the implicit Euler method
Example 2: a third order implicit method
Properties of order arrows

Example 1: thd m method (order arrows)

Note the behaviour near zero:
becauseR(z) exp(—2) = 1+3224+0(Z%), the dashed red lines are tangent to the
order arrows at zero and the angle between these tangemtscityar/2.

Up-arrows (increasing values Bfz)e ?) alternate with down-arrows.
Note the existence of a pole as the termination point of aarupw.

_"'io""is""ho""'zs@



Order stars and order arrows|  Example 1: the implicit Euler method
Example 2: a third order implicit method
Properties of order arrows

Example 2: thel' h method (order star)
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Example 2: thel' h method (order star)

Fingers subtend angles/4 at 0 because expz)R(z) ~ 1+ 5;,7".
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Example 2: thel' h method (order star)

Fingers subtend angles/4 at 0 because expz)R(z) ~ 1+ 5;,7".
Bounded fingers contain poles.
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Example 2: thel' h method (order star)

Fingers subtend angles/4 at 0 because expz)R(z) ~ 1+ 5;,7".
Bounded fingers contain poles.

Finﬁers overIaR imaginary axis. Hence the method is notaiist @
10 15 50 S5\ -
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Example 2: thel'h method (order arrows)
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Example 2: thel'h method (order arrows)

Angles /4 between arrows at 0, because @xpR(2) ~ 1+ 7",
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Example 2: thel'h method (order arrows)

Angles /4 between arrows at 0, because @xpR(2) ~ 1+ 7",
Poles are at the ends of up-arrows from O.
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Example 2: thel'h method (order arrows)

Angles /4 between arrows at 0, because @xpR(2) ~ 1+ 7",
Poles are at the ends of up-arrows from O.

There is an up-arrow tangential to the imaginary axis.

Hence the method is not A-stable.
T S e L N S =
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Properties of order arrows

Order Stars were introduced in the classic 1978 gagped are the
subject of a 1991 monograph

IWanner G., Hairer E. and Ngrsett S. P., Order stars andigyahéorems, BIT
18 (1978), 475489
2|serles A. and Ngrsett S. P., Order Stars, Chapman & Halgi(19
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Order Stars were introduced in the classic 1978 gagped are the
subject of a 1991 monograph

Order arrows have related properties such as

@ Up-arrows from zero terminate at poles orat

IWanner G., Hairer E. and Ngrsett S. P., Order stars andigyahéorems, BIT
18 (1978), 475489
2|serles A. and Ngrsett S. P., Order Stars, Chapman & Halgi(19
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Properties of order arrows

Order Stars were introduced in the classic 1978 gagped are the
subject of a 1991 monograph

Order arrows have related properties such as

@ Up-arrows from zero terminate at poles orat
@ Down-arrows from zero terminate at zeros o#-at

IWanner G., Hairer E. and Ngrsett S. P., Order stars andigyahéorems, BIT
18 (1978), 475489
2|serles A. and Ngrsett S. P., Order Stars, Chapman & Halgi(19
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Properties of order arrows

Order Stars were introduced in the classic 1978 gagped are the
subject of a 1991 monograph

Order arrows have related properties such as

@ Up-arrows from zero terminate at poles orat
@ Down-arrows from zero terminate at zeros o#-at

@ There is an arrow from zero in the direction of the positiva re
axis (up- or down- depending on the sign of the error constant

IWanner G., Hairer E. and Ngrsett S. P., Order stars andigyahéorems, BIT
18 (1978), 475489
2|serles A. and Ngrsett S. P., Order Stars, Chapman & Halgi(19
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Properties of order arrows

Order Stars were introduced in the classic 1978 gagped are the
subject of a 1991 monograph

Order arrows have related properties such as

@ Up-arrows from zero terminate at poles orat

@ Down-arrows from zero terminate at zeros ox-ab

@ There is an arrow from zero in the direction of the positiva re
axis (up- or down- depending on the sign of the error constant

@ For an ordep approximation, there ang+ 1 down-arrows from
zero alternating witlp+ 1 up-arrows from zero

IWanner G., Hairer E. and Ngrsett S. P., Order stars andigyahéorems, BIT
18 (1978), 475489
2|serles A. and Ngrsett S. P., Order Stars, Chapman & Halgi(19

_'io""is""éo""'25®




Order stars and order arrows|  Example 1: the implicit Euler method
Example 2: a third order implicit method
Properties of order arrows

Properties of order arrows

Order Stars were introduced in the classic 1978 gagped are the
subject of a 1991 monograph

Order arrows have related properties such as

(4

Up-arrows from zero terminate at poles orab
Down-arrows from zero terminate at zeros orat

There is an arrow from zero in the direction of the positiva re
axis (up- or down- depending on the sign of the error constant

For an ordep approximation, there ang+ 1 down-arrows from
zero alternating witlp+ 1 up-arrows from zero

@ The angle between one arrow from zero and the nexf {p+ 1)

©

©

©

IWanner G., Hairer E. and Ngrsett S. P., Order stars andigyahéorems, BIT
18 (1978), 475489
2|serles A. and Ngrsett S. P., Order Stars, Chapman & Halgi(19
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If R(2) is an A-function (the stability function of an A-stable metf),
then we can make further statements
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Properties of order arrows

If R(2) is an A-function (the stability function of an A-stable metf),
then we can make further statements

Theorem
Let Rz) be an A-function then
@ exp(—2)R(2) has no poles in the left half-plane.
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If R(2) is an A-function (the stability function of an A-stable metf),
then we can make further statements

Theorem
Let Rz) be an A-function then
@ exp(—2)R(2) has no poles in the left half-plane.
@ No up-arrow from zero can be tangential to the imaginary axi
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Order stars and order arrows|  Example 1: the implicit Euler method
Example 2: a third order implicit method

Properties of order arrows

If R(2) is an A-function (the stability function of an A-stable metf),
then we can make further statements

Let Rz) be an A-function then
@ exp(—2)R(2) has no poles in the left half-plane.

@ No up-arrow from zero can be tangential to the imaginary axi
© No up-arrow from zero can cross the imaginary axis.
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Order stars and order arrows|  Example 1: the implicit Euler method
Example 2: a third order implicit method

Properties of order arrows

If R(2) is an A-function (the stability function of an A-stable metf),
then we can make further statements

Let Rz) be an A-function then
@ exp(—2)R(2) has no poles in the left half-plane.
@ No up-arrow from zero can be tangential to the imaginary axi
© No up-arrow from zero can cross the imaginary axis.

These properties follow from similar facts abdr(iz) and the
observation that multiplication by expz) does not affect the poles or
the behaviour ofR(z)| on the imaginary axis.
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© Applications
@ The Ehle “conjecture”
@ The Daniel-Moore “conjecture”
@ The Butcher-Chipman conjecture
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Ehle “conjecture”

A Padé approximation is a rational functi®iz) = N(z)/D(z) such that
R(2) = eXP(Z)JrOE(a\OZRp“),( /e

where the order i = n+d, with n= degN) andd = degD).
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Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Ehle “conjecture”

A Padé approximation is a rational functi®iz) = N(z)/D(z) such that
R(2) = eXP(Z)JrOE(a\OZRp“),( /e

where the order i = n+d, with n= degN) andd = degD).

Some Padé approximations correspond to A-stable nunhemiethods and
some don't. See the table:
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Ehle “conjecture”

A Padé approximation is a rational functi®iz) = N(z)/D(z) such that
R(2) =exp(2>+06(}\oZFp“),( /P

where the order ip = n+ d, with n= degN) andd = deg D).

Some Padé approximations correspond to A-stable nunhemiethods and
some don't. See the table:

N 0 1 2 3 4 5
0 1 1+z 14z+37
1 1 1+iz 1+22+372
1-z l—gz 1-1z

) 1 1+iz 1+3z+ 42

1-z432 17§z45%z2 1—§z+i222
3 o 3 ltzz T §+§Zs+ﬁ221

12452381374 ;22— 2,78 1- 27+ 32— 578

4
5
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Ehle “conjecture”

A Padé approximation is a rational functi®iz) = N(z)/D(z) such that
R(2) =exp(2>+06(}\oZFp“),( /P

where the order ip = n+ d, with n= degN) andd = deg D).

Some Padé approximations correspond to A-stable nunhemiethods and
some don't. See the table:

N 0 1 2 3 4 5
0 1 1+z 14z+37
1 1 1+1z 1+22+372
1-z 1—%2 1-1z
1,01
) 1 1437 1+3z+ 57
1-z432 17§z45%z2 1—%z+i222
3 o 3 ltzz T §+523+ﬁ221
12452381374 ;22— 2,78 1- 27+ 32— 578
4
5

Byron Ehle conjectured that A-stability implies< n+ 2.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Let Rz) = N(z)/D(z) be anld, n| approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pbant
arrow from zero.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Let Rz) = N(z)/D(z) be anld, n| approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pbart
arrow from zero.

This result is illustrated in the cage n| = [3,2].
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Let Rz) = N(z)/D(z) be anld, n| approximation with order p= n+d.

Then each of the poles and each of the zeros is a terminal pbart
arrow from zero.

This result is illustrated in the cage n| = [3,2].

(1) Letn be the number of down-arrows terminating a
zeros.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Let Rz) = N(z)/D(z) be anld, n| approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pbart
arrow from zero.

This result is illustrated in the cage n| = [3,2].
(1) Letn be the number of down-arrows terminating a
zeros.
(2) Let d be the number of up-arrows terminating| at
poles.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Let Rz) = N(z)/D(z) be anld, n| approximation with order p= n+d.

Then each of the poles and each of the zeros is a terminal pbart
arrow from zero.

This result is illustrated in the cage n| = [3,2].

(1) Letn be the number of down-arrows terminating a
zeros.
(2) Let d be the number of up-arrows terminating| at
poles.
(3) From (1), 14+ n+d —n down-arrows terminate @t
+-00.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Let Rz) = N(z)/D(z) be anld, n| approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pbart
arrow from zero.

This result is illustrated in the cage n| = [3,2].

(1) Letn be the number of down-arrows terminating a
zeros.
(2) Let d be the number of up-arrows terminating| at
poles.
(3) From (1), 14+ n+d —n down-arrows terminate @t
+-00.

(4) Because down-arrows and up-arrows cannot cross the srast
n+ d— "N up-arrows terminating at poles.

'25@
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture
The Butcher-Chipman conject

ure

Let Rz) = N(z)/D(z) be anld, n| approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pbart

arrow from zero.

This result is illustrated in the cage n| = [3,2].

(1) Letn be the number of down-arrows terminating a

zeros.

(2) Let d be the number of up-arrows terminating
poles.

(3) From (1), 1+ n+d —n down-arrows terminate
+-00.

at

At

(4) Because down-arrows and up-arrows cannot cross the srast

n+d—nup-arrows terminating at poles.
(5) From (2) and (4)n+d—-n<d.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture
The Butcher-Chipman conject

Let Rz) = N(z)/D(z) be and, n] approximation with

ure

order p=n+d.

Then each of the poles and each of the zeros is a terminal pbart

arrow from zero.

This result is illustrated in the cage n| = [3,2].

(1) Letn be the number of down-arrows terminating a

zeros.

(2) Let d be the number of up-arrows terminating
poles.

(3) From (1), 1+ n+d —n down-arrows terminate
+-00.

at

At

(4) Because down-arrows and up-arrows cannot cross the srast

n+d—nup-arrows terminating at poles.
(5) From (2) and (4)n+d—-n<d.

Hence the sum of the two non-negative integersn andd — dis

non-positive. Therefore = n andd = d.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Theorem (Hairer-Ngrsett-Wanner Theorem)
A[d,n] Pack approximation is an A-function only if
d—-n<2
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Theorem (Hairer-Ngrsett-Wanner Theorem)
A [d,n] Pack approximation is an A-function only if

d-n<2

Let © be the set of angles if+- 7, 71 at which an up-arrow leaves zero
and terminates at a pole.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Theorem (Hairer-Ngrsett-Wanner Theorem)
A [d,n] Pack approximation is an A-function only if

d-n<2

Let © be the set of angles if+- 7, 71 at which an up-arrow leaves zero
and terminates at a pole.

Because successive member®dliffer by at least 2r/(n+d+ 1), it
follows that

max®) —min(®) > %
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Theorem (Hairer-Ngrsett-Wanner Theorem)
A [d,n] Pack approximation is an A-function only if

d-n<2

Let © be the set of angles if+- 7, 71 at which an up-arrow leaves zero
and terminates at a pole.

Because successive member®dliffer by at least 2r/(n+d+ 1), it
follows that 2md 1)
. m(d—
max @) —min(®) > ————-.
X®) In(©) = n+d+1
This angle must be less than otherwise there will be up-arrows from
zero which do one of the following

© are tangential to the imaginary axis,
Q@ terminate at a pole in the left half-plane
© cross back over the imaginary axis to the right half-plane.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Theorem (Hairer-Ngrsett-Wanner Theorem)

A [d,n] Pack approximation is an A-function only if

d-n<2

Let © be the set of angles if+- 7, 71 at which an up-arrow leaves zero
and terminates at a pole.

Because successive member®dliffer by at least 2r/(n+d+ 1), it
follows that

max®) —min(®) > %

This angle must be less than otherwise there will be up-arrows from
zero which do one of the following

© are tangential to the imaginary axis,
Q@ terminate at a pole in the left half-plane
© cross back over the imaginary axis to the right half-plane.

The last two of these options are illustrated on the nexeslid

'25@
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”

The Butcher-Chipman conjecture




The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”

The Butcher-Chipman conjecture

Since
2n(d—1)

<TT
n+d+1 ’
we deduce that

d-n<3.
e x@)



The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Daniel-Moore “conjecture”

This former conjecture was first proved using order stard ingut
today | will outline an order arrow proof.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Daniel-Moore “conjecture”

This former conjecture was first proved using order stard ingut
today | will outline an order arrow proof.

It concerns a more general type of approximation, in wit¢?) is
replaced by a solution to a polynomial equation

D(W,2) = W"Py(2) + W Py (2) + - +Pm(2) = 0,
and the degrees &%, P1,...,Pnare[do,ds,...,dn).
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Daniel-Moore “conjecture”

This former conjecture was first proved using order stard ingut
today | will outline an order arrow proof.

It concerns a more general type of approximation, in wit¢?) is
replaced by a solution to a polynomial equation

D(W,2) = W"Py(2) + W Py (2) + - +Pm(2) = 0,
and the degrees &%, P1,...,Pnare[do,ds,...,dn).
Order arrows now live on a Riemann surface
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Daniel-Moore “conjecture”

This former conjecture was first proved using order stard ingut
today | will outline an order arrow proof.

It concerns a more general type of approximation, in wit¢?) is
replaced by a solution to a polynomial equation

D(W,2) = W"Py(2) + W Py (2) + - +Pm(2) = 0,
and the degrees &%, P1,...,Pnare[do,ds,...,dn).
Order arrows now live on a Riemann surface

A multivalue approximation with degree vectds, ds, ..., dy] is an
A-function only if

p < 2do.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”

The Butcher-Chipman conjecture

For an A-approximation, we must avoid an arrow diagram lite t
following, because we cannot have an up-arrow from zercsaigshe
imaginary axis on its way te-co.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”

The Butcher-Chipman conjecture

For an A-approximation, we must avoid an arrow diagram lite t
following, because we cannot have an up-arrow from zercsaigshe
imaginary axis on its way te-co.

Hence,
2m(do+ 1) -

p+1
which impliesp < 2dj.
Duesp = 2Co @




The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Butcher-Chipman conjecture

This conjecture concerns a multivalue generalization oePa
approximations in which the order is

p=do+di+-+dn+m—1
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Butcher-Chipman conjecture

This conjecture concerns a multivalue generalization oePa
approximations in which the order is

p=do+di+---+dn+m-1
The conjecture surmised that a necessary condition for an

A-approximation is that
2d0 - p S 27

just as for the Ehle result.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Butcher-Chipman conjecture

This conjecture concerns a multivalue generalization oePa
approximations in which the order is

p=do+di+---+dn+m-1
The conjecture surmised that a necessary condition for an
A-approximation is that
2do—p<2,

just as for the Ehle result.

It is not possible to include a proof of this result here butih at least
be noted that the crucial part of the proof is that every pokt the end
of an up-arrow from zero.
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The Ehle “conjecture”
Applications The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Butcher-Chipman conjecture

This conjecture concerns a multivalue generalization oePa
approximations in which the order is

p=do+di+---+dn+m-1
The conjecture surmised that a necessary condition for an
A-approximation is that
2do—p<2,

just as for the Ehle result.

It is not possible to include a proof of this result here butih at least
be noted that the crucial part of the proof is that every pokt the end
of an up-arrow from zero.

The simple argument which worked in the case- 1 cannot be used
in the more general situation because it might be possible fo
up-arrows from zero to cross down-arrows from zero if theyoln

different sheets of the Riemann surface. @
—— e




Why arrow pictures are hard to draw
Why arrow pictures are easy to draw

Drawing pictures A differential equation for order arrows

© Drawing pictures
@ Why arrow pictures are hard to draw
@ Why arrow pictures are easy to draw
o A differential equation for order arrows
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Why arrow pictures are hard to draw
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Drawing pictures A differential equation for order arrows

Why arrow pictures are hard to draw

Becausev(z) = R(z) exp(—2) is very close to 1 whenis close to
zero, it is difficult to determine accurately whei(z) is real.
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Why arrow pictures are easy to draw
Drawing pictures A differential equation for order arrows

Why arrow pictures are hard to draw

Becausev(z) = R(z) exp(—2) is very close to 1 whenis close to
zero, it is difficult to determine accurately whei(z) is real.

To illustrate this, consider thi®, 5] Padé approximation

1 1 1 1 1
_ 1+ §Z+ §Zz+7—223+m24+—3024025
1 1 1 1 1
1-32+ 52 — 72+ 1007 — o0

R(2)

—"'ho""'zs@



Why arrow pictures are hard to draw
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Why arrow pictures are hard to draw

Becausev(z) = R(z) exp(—2) is very close to 1 whenis close to
zero, it is difficult to determine accurately whei(z) is real.

To illustrate this, consider thi®, 5] Padé approximation

1 1 1 1 1
_ 1+ §Z+ §Zz+7—223+m24+—3024025
1 1 1 1 1
1-32+ 52 — 72+ 1007 — o0

R(2)

In the next slide, we will present a figure constructed byesihg
the imaginary part oR(z) exp(—z) over a grid of points superimposed
on the unit circle centred at O.
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Why arrow pictures are hard to draw

Becausev(z) = R(z) exp(—2) is very close to 1 whenis close to
zero, it is difficult to determine accurately whei(z) is real.

To illustrate this, consider thi®, 5] Padé approximation

15,1 1 1 1
R(Z) _ 1+ §Z+ §22+ 7—223+ WOSZ4+ 3024025
1, 1 1 1 1

1-32+ 52 — 72+ 1007 — o0
In the next slide, we will present a figure constructed byesihg
the imaginary part oR(z) exp(—z) over a grid of points superimposed
on the unit circle centred at O.
The centre of each small square was regarded as a point odemn or
arrow if the sum of the signs of the imaginary partswg) at the
corners was-1, 0 or+1 and the real part of/(z) is positive.
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Why arrow pictures are hard to draw
Why arrow pictures are easy to draw
Drawing pictures A differential equation for order arrows

Why arrow pictures are easy to draw

Even though we cannot obtain a clear picture of the arrowsily t
technique, we can take into account that, near zero, we kinatitte
lines we want are approximately radial with arguments

6 = 21k/22, k=0,1,2,...,21
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Why arrow pictures are easy to draw

Even though we cannot obtain a clear picture of the arrowsily t
technique, we can take into account that, near zero, we kinatitte
lines we want are approximately radial with arguments

6 = 21k/22, k=0,1,2,...,21

In the next figure, lines in these directions are shown but egtch
point replaced by the closest point arising in the previogsré.
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Why arrow pictures are hard to draw
Why arrow pictures are easy to draw

Drawing pictures A differential equation for order arrows

This gives a reasonable looking effect which can be imprdoyed
starting with a much finer grid and extending the region cedd¢o a
large rectangle centred at the origin.

—'ho""'zs@



Why arrow pictures are hard to draw
Why arrow pictures are easy to draw

Drawing pictures A differential equation for order arrows

This gives a reasonable looking effect which can be imprdoyed
starting with a much finer grid and extending the region cedd¢o a
large rectangle centred at the origin.

Most of the pictures in this talk were drawn in this way.

5y - - - - EE T T {0 © T T I T T 50 ""25@
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A differential equation for order arrows

The difficulty caused by machine arithmetic can be elimidate
another way, in the case of a Padé approximalioz) /D(z).
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A differential equation for order arrows

The difficulty caused by machine arithmetic can be elimidate
another way, in the case of a Padé approximalioz) /D(z).

Write w = exp(t) in the relationshipvD(z) exp(z) — N(z) = 0, so that
exp(z+1t)D(z) —N(z) = 0. (1)
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A differential equation for order arrows

The difficulty caused by machine arithmetic can be elimidate
another way, in the case of a Padé approximalioz) /D(z).

Write w = exp(t) in the relationshipvD(z) exp(z) — N(z) = 0, so that
exp(z+1t)D(z) —N(z) = 0. (1)

We can now construct a differential equation expressing the

dependence afont. Differentiate (1) and it is found that

exp(z+1)(Z(t)(D'(z2) +D(2)) +D(2)) - Z(H)N' (2 =0.  (2)
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A differential equation for order arrows

The difficulty caused by machine arithmetic can be elimidate
another way, in the case of a Padé approximalioz) /D(z).
Write w = exp(t) in the relationshipvD(z) exp(z) — N(z) = 0, so that
exp(z+1t)D(z) —N(z) = 0. (1)
We can now construct a differential equation expressing the
dependence afont. Differentiate (1) and it is found that
exp(z+1t)(Z(t)(D'(2)+ D(2)) +D(z)) —Z(t)N'(z2) =0.  (2)
Eliminate exgz+t) from (1) and (2) to yield the differential equation
Z(t)F =N(2)D(2), ®3)
where
F =D(2N'(2) — D'(2N(z) — D(2)N(2). 4)

—ho""'zs@



Why arrow pictures are hard to draw
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Drawing pictures A differential equation for order arrows

Interpret exgz+t)D(z) — N(z) = 0 as defining as a function of for
|z| small, so that = —CZ2*1 4 O(2*+2), whereC is the error constant.
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Why arrow pictures are hard to draw
Why arrow pictures are easy to draw

Drawing pictures A differential equation for order arrows

Interpret exgz+t)D(z) — N(z) = 0 as defining as a function of for
|z| small, so that = —CZ*1 + O(2"*2), whereC is the error constant.

We can now say something abdutlt is equal to
D(2N'(2) —D'(2)N(2) - D(2)N(2) = —(p+1)C2 4+ O(Z™1).
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Why arrow pictures are easy to draw

Drawing pictures A differential equation for order arrows

Interpret exgz+t)D(z) — N(z) = 0 as defining as a function of for

|z| small, so that = —CZ*1 + O(2"*2), whereC is the error constant.

We can now say something abdutlt is equal to

D(2N'(2) —D'(2)N(2) - D(2)N(2) = —(p+1)C2 4+ O(Z™1).
TheO(2*1) term can be deleted becausés a polynomial of degree
p.
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Interpret exgz+t)D(z) — N(z) = 0 as defining as a function of for

|z| small, so that = —CZ*1 + O(2"*2), whereC is the error constant.

We can now say something abdutlt is equal to

D(2N'(2) —D'(2)N(2) - D(2)N(2) = —(p+1)C2 4+ O(Z™1).
TheO(2*1) term can be deleted becausés a polynomial of degree
p.
Hence ag moves from zero in a positive direction (up-arrows) or a
negative direction (down-arrows) tlaevalue traces out a path
satisfying the differential equation

1
Cd(z;’: ) = —N(z)D(2),
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Interpret exgz+t)D(z) — N(z) = 0 as defining as a function of for

|z| small, so that = —CZ*1 + O(2"*2), whereC is the error constant.

We can now say something abdutlt is equal to

D(2N'(2) —D'(2)N(2) - D(2)N(2) = —(p+1)C2 4+ O(Z™1).
TheO(2*1) term can be deleted becausés a polynomial of degree
p.
Hence ag moves from zero in a positive direction (up-arrows) or a

negative direction (down-arrows) tlaevalue traces out a path
satisfying the differential equation

d(ZpH')_
C gt = —N(z)D(2),

This differential equation can be used to draw order arrawsi@tely.
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I would now like to show you a gallery of some order arrows ynies
based on both rational and quadratic approximations.
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Gallery

I would now like to show you a gallery of some order arrows ynies
based on both rational and quadratic approximations.

Where an approximation is given in the form

[ Po(2), Pi(2), P2(2) ]
this denotes the quadratic function

D(W,2) = Po(2W? 4 P1(2)w+ Py (2).
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Gallery

I would now like to show you a gallery of some order arrows ynies
based on both rational and quadratic approximations.

Where an approximation is given in the form

[ Po(2), Pi(2), P2(2) ]
this denotes the quadratic function

(W, 2) = Po(2W? + P1(2)w+ Pa(2).
The first picture will be for th¢5, 5] Padé approximation.
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Gallery

I would now like to show you a gallery of some order arrows ynies
based on both rational and quadratic approximations.

Where an approximation is given in the form
[ Po(2), Pi(2), Pa(2) ]
this denotes the quadratic function
D(W,2) = Po(2W? 4 P1(2)w+ Py (2).
The first picture will be for th¢5, 5] Padé approximation.
This was constructed using the differential equation aggiio
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‘ Padé approximatio}d, 5] ‘
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J Sixth order with poleg4,5,6,7,8,9} ‘
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‘ An A-acceptable second derivative approximationa 6‘
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‘ A ninth order approximatioh
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‘ A fifteenth order approximatio‘n
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