
COMPUTING ARITHMETIC PICARD-FUCHS EQUATIONS

JEROEN SIJSLING

These are the extended notes for a talk given at the Fields Institute on August
24th, 2011, about my thesis work with Frits Beukers at the Universiteit Utrecht.
The style of these notes is rather rough, I am afraid; it is certainly not in the good
Theorem-Proof tradition. However, I need to paint with a broad brush in order not
to get bogged down into technical details that are of minor interest to geometers.
There is a very useful general introduction to Shimura curves and the associated
groups in the notes at http://jmilne.org/math/xnotes/svi.html.

1. FUCHSIAN EQUATIONS FROM GEOMETRY

We consider second-order Fuchsian differential equations. The equations living
on the curve P1

C with three singularities are well-understood: putting the singu-
larities at {0, 1, ∞}, these are the hypergeometric equations

(z(z− 1)
d2

dz2 + ((a + b + 1)z− c)
d
dz

+ ab)u = 0.(1.1)

Here a, b, c are arbitrary parameters. These equations have been studied exten-
sively; their history starts with Schwarz and continues into modern generaliza-
tions due to Gel’fand-Kapranov-Zemlinsky also studied by Beukers, Bod, and
Heckman.

The equation (1.1) acquires particular geometric significance is acquired when
1− c = 1/p, c− a− b = 1/q and a− b = 1/r are reciprocals of integers p, q, r ∈
Z≥2. Then there exist two solutions u1, u2 of (1.1) such that the quotient u1/u2
maps the upper half planeH to a hyperbolic triangle, also inH, and such that an-
alytic continuation of this quotient yields a tiling ofH. The projective monodromy
group ∆(p, q, r) is then a discrete subgroup of PSL2(R) with presentation

∆(p, q, r) = 〈α, β, γ|αp = βq = γr = αβγ = 1〉.(1.2)

These groups are called triangle groups.
Fix a complex elliptic curve E. Then the Fuchsian equations on E with a single

singular point (which we may assume to be at the origin) are given by

(y
d

dx
)2u = (n(n + 1)x + A)u,(1.3)

where n and A are parameters.
We again consider cases when (1.3) is geometrically significant. For this, fix

an integer e ∈ Z≥2, and consider the maximal covering π : U → E ramifying
only above 0 ∈ E(C), of index e. (This covering exists in the category of Riemann
surfaces, though not in the category of algebraic curves.) Then the general theory
of uniformizing differential equations shows:

(i) U ∼= H.
(ii) The map π can be identified with the projection H → Γ\H for some dis-

crete Γ ∈ PSL2(R).
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(iii) For n = 1
2e −

1
2 and for some A, there is a quotient of two solutions u1, u2

of (1.3) mapping E to a quadrilateral in H. The multivalued inverse map
π−1 is given by the analytic continuation of this quotient.

(iv) For the above choice of A, the projective monodromy group of Γ can be
identified with Γ. The group Γ has presentation

Γ = 〈α, β, γ|γ = [α, β], γe = 1〉.(1.4)

Finally, one can prove, using Rankin-Cohen brackets, that one of the so-
lutions of (1.3) is then given by a meromorphic modular form for Γ.

We call the group Γ occurring above (1; e)-groups. The correspondence between
Γ and the pair (E = Γ\H, A) is a special instance of the classical accessory parameter
problem, for which no general methods exist as of yet. We restrict our attention
further by taking a small detour.

2. ARITHMETICITY

Let F be a totally real number field. Let B be a quaternion algebra over F, that
is, a vector space

B = F⊕ Fi⊕ Fj⊕ Fk(2.1)

with F-algebra structure determined by i2 ∈ F×, j2 ∈ F×, ij = k = −ij. The
most well-known case is of course the Hamilton algebra H over R determined by
i2 = −1 = j2.

Let O be an order of B, that is, a projective ZF-submodule of B of rank 4 that is
also a ring. Suppose that

B⊗Q R ∼= M2(R)⊗H⊗ · · · ⊗H;(2.2)

this just means that except for a single embedding of F into R, the squares i2 and j2

are both negative. B then embeds in the first factor of (2.2) via some ι. We identify
both B and O with their image in M2(R). Set O+ = O× ∩ GL2(R)+ (positive
determinant), and let PO+ be its image in PSL2(R).

Definition 2.1. A subgroup of PSL2(R) is called arithmetic if there exist F, B,O, ι as
above such that the intersection of Γ and PO+ as finite index in both. Γ and PO+

are then called commensurable. Notation: Γ ∼ PO+.

An example is in order. If we take F = Q, B = M2(Q), O = M2(Z) and ι the
canonical embedding, then PO+ = PO1 = PSL2(Z). This is the classical modular
group, whose fundamental domains contain cusps.

For all non-matrix B, the fundamental domains for PO+ do not contain cusps.
This makes them prettier, but also excludes the use of Fourier expansions, making
its harder to calculate with modular form on Γ\H.

Before resuming the main thread of our argument, let it be mentioned that in the
case F = Q, work by Shimura shows that the curve PO+\H parametrizes certain
fake elliptic curves. That is, if we let FE(O) be the set of isomorphism classes of
pairs (A, i), where A is a principally polarized abelian surface and i is a (maximal,
Rosati-compatible) embedding of O into End(A), then there is a bijection

PO+\H −→ FE(O)(2.3)

z 7−→ C2/O
(

z
1

)
.

This connection with periods is why we call the differential equations associated
with arithmetic groups arithmetic Picard-Fuchs equations.
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3. OUR OBJECTIVES

Kisao Takeuchi proved in 1983 that there are 73 (1; e)-groups up to conjugacy.
We wish to determine the pair (E, A) for these Γ. The original motivation (due
to Beukers) is the extension of Apery-like irrationality results; however, the above
shows that our problem is also deeply related with the determination of the Shimura
curves (featured below) and with the construction of modular forms for general
subgroups Γ of PSL2(R).

We illustrate our main approaches below. Let us mention that we were able
to determine the isogeny class of E in all cases, its isomorphism class in about
two-thirds, and A in about one-third of them.

4. CASE 1: Γ ∼ ∆

Suppose first that Γ is commensurable with a triangle group. For simplicity, we
even suppose that there is an inclusion Γ ⊂ ∆(p, q, r) (this is not typical, though).
After Elkies, who explored these questions in a genus 0 setting, we use the bijec-
tions between the sets consisting of the following elements:

(i) Conjugacy classes of subgroups Γ of ∆(p, q, r).
(ii) Isomorphism classes of finite morphisms X → P1

C ramifying only above
0, 1, ∞ of index dividing p, q, r, respectively.

(iii) Conjugacy classes of finite permutation triples (σ0, σ1, σ∞) satisfying σ
p
0 =

σ
q
1 = σr

∞ = σ0σ1σ∞ = 1.

The triple of permutations associated to an inclusion Γ ⊂ ∆(p, q, r) corresponds to
the morphism

∆(p, q, r)→ Sym(∆(p, q, r)/Γ)(4.1)

induced by left multiplication.
Knowing Γ and ∆(p, q, r) explicitly enough (and Takeuchi allows us to get good

grip on these groups), one can therefore employ group theory to study and sim-
plify the calculation of the cover X → P1

C. We illustrate this in the next example.
After determining the cover, one can find A in (1.3) by pulling back the equation
(1.3) and then taking a suitable projective normalization.

The promised example is the following. Consider the triangle group ∆ = ∆(2, 5, 6).
Then using permutations, one shows that there exists a unique cover of P1

C as
above of degree 6 and with ramification indices (2, 2, 2), (5, 1) and (6) at the points
above 0, 1, ∞. Indeed, there exist permutations in the corresponding conjugacy
classes of S6 with trivial product.

Consider this cover f : X → PP1. Riemann-Hurwitz shows that X has genus
1. The quotient map from H to P1

C = ∆\H ramifies doubly above 0. But so does
f . Hence the factorization H → X does not ramify at the points above 0. Arguing
similarly in the other fibers, we see that H → X ramifies only above the point at
which f ramifies singly, which is in accordance with our geometric construction of
(1; 5)-groups.

Putting the sextuply (instead of the singly) ramifying point at infinity, f is given
by

22

55 (9xy− x3 − 15x2 − 36x + 32)(4.2)

from the curve

y2 + xy + y = x3 + x2 + 35x− 28.(4.3)
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5. CASE 2: Γ � ∆

The preceding case was extremely agreeable in that we could determine the
parameter A in (1.3). The method we now describe only manages to describe
E = Γ\H. This is done by exploiting the arithmetic properties of Γ\H. We now
suppose that Γ is a (1; e)-group such that Γ = PO+. (Actually, this never happens,
but we can pretend so for expository purposes.)

We need some notation. Let A f be the finite adèle ring over Q, let Ẑ be the
integral closure of Z in A f , and let X = P1(C) → P1(R). Let K = (O ⊗Z Ẑ)×

and consider the double quotient

B×\X× (B⊗Q A f )×/K(5.1)

Here K acts only on the right factor of X × (B ⊗Q A f )×, via left multiplication.
B× acts on (B⊗Q A f )× on the left via the diagonal embedding, and on X via the
fractional linear transformations obtained via the previously chosen embedding ι.

It is then a triviality (!) to show that Γ\H is isomorphic to the connected com-
ponent of Sh(K) containing (i, 1). This rephrasing may seem overly cumbersome,
but it is important to describe the arithmetic properties mentioned in the next para-
graph. Furthermore, when Γ 6= PO+, it is sometimes necessary to use more gen-
eral groups K.

We describe some arithmetic properties of Sh0(K).

• Field of definition. There is a norm map on B and its completions that
is the analogue of the determinant map on M2(F). Applying this to (5.1),
one obtains a double quotient F×\{±1} × (A f )×/Nm(K). Global class
field theory associated a finite abelian extension H of F to this double
quotient. Work by Shimura shows that the curve Sh0(K) admits a model
over H that is ”canonical” (meaning that the points on this model gener-
ate appropriate class fields). We identify Sh0(K) with this model in what
follows. Let us remark that if O is maximal and the narrow class number
of F equals 1 (such as in the case F = Q), then H = F.

• Bad primes. By work of Carayol, these are exactly the primes of H over
the primes p of F where either B⊗F Fp is not isomorphic to M2(Fp) or K
is not maximal.

• Traces of Frobenius. As in the classical modular case, the traces of Frobe-
nius of Sh0(K) can be calculated at a good prime p by a purely geometrical
construction. Indeed, the Eichler-Shimura relation describes a geometric
correspondence that reduces mod p to the Frobenius correspondence. The
former correspondences can be determined once a fundamental domain
for PO+ is determined. But this is the quadrilateral mentioned earlier.

• Valuations of j. The valuations of j(Sh0(K)) at the primes of H over the
primes p of F such that B⊗F Fp � M2(Fp) can be calculated using p-adic
uniformization results by Boutot and Zink. I will not go into detail on
this.

All the above data can be determined explicitly by combining the work of
Takeuchi with algorithms developed by Voight. Our trick, a generalization of an
idea due to Dembélé and Donnelly, is to combine them to determine Sh0(K) as a
genus 1 curve over H. In all our cases, we have that after calculating the number of
points of Sh0(K) modulo over many good primes, these numbers are all divisible
by a small prime p (usually 2). So Sh0(K) most likely gives rise to an H-rational
point on the classical modular curve Y0(p). There are two cases.
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• If g(Y0(p)) > 0, then these H-points are either a finite set or a finitely gen-
erated group. Browsing through them quickly gives a candidate equation
for Sh0(K).

• If g(Y0(p)) = 0, then Y0(p) allows an equation uj = f (u). Here f is a
monic integral polynomial of degree p + 1 whose constant term is a non-
trivial power of p. We can parametrize Gm → Y0(p) via u 7→ (u, f (u)/u).
However, we need to do better, because Gm(H) is not finitely generated.
For this, we simply note that u cannot have non-trivial valuation at the
good primes P of Sh0(K) not lying above p, because we would then have
vP(j) < 0, in contradiction with the good reduction of Sh0(K). This cuts
down the parametrization of H-points to a finitely generated group, al-
lowing us once more to quickly find a candidate equation.

Of course, we have to prove that the resulting candidate for Sh0(K) is cor-
rect. A result by Faltings and Serre can be used to verify the correctness of the
isogeny class by computing only finitely many traces of Frobenius. The isomor-
phism classes in this isogeny class can then be calculated effectively by using a
result of Dieulefait and Dmitrov. If only one isomorphism class has the correct
valuations of j, then we have found a correct equation.

This method is rather indirect. . .

6. FINAL COMMENTS

Some interesting question remain, for example:

(i) When does the model Sh0(K) for Γ\H determine on the choice of K?
(ii) How can one efficiently determine the parameter A in Case 2 above? Pre-

vious work was done by Elkies, and Hoefmann, Van Straten and Yang
have developed numerical methods.

Finally, the reader who is interested can experiment with our methods himself, us-
ing the Magma programs at http://sites.google.com/site/sijsling/programs.

http://sites.google.com/site/sijsling/programs
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