
Degenerations of K3 Surfaces of Degree Two

Alan Thompson

24th August 2011, Fields Institute, Toronto.

This talk is based upon my recent work on the explicit study of degener-
ations of K3 surfaces of degree two. Its contents may be found in more detail
in the preprint [Tho10] and in my doctoral thesis [Tho11], a copy of which
is currently available on my website:

http://people.maths.ox.ac.uk/∼thompsona

Recall. Let π : X → ∆ be a semistable degeneration of K3 surfaces (i.e. a
proper, flat, surjective morphism π : X → ∆ whose general fibre Xt = π−1(t)
for t ∈ ∆∗ = ∆ − {0} is a smooth K3 surface, such that X is smooth
and X0 := π−1(0) is reduced with normal crossings). Then Kulikov [Kul77]
[Kul81] and Persson-Pinkham [PP81] show that we can perform birational
modifications that affect only the central fibre X0
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~~

∆

so that π′ : X ′ → ∆ is semistable and has ωX′ ∼ OX′ . Such π′ : X ′ → ∆ is
called a Kulikov model of our degeneration.

Kulikov models are classified by the following theorem:

Theorem 1. [Per77], [Kul77] [FM83] Let π : X → ∆ be a semistable degen-
eration of K3 surfaces with ωX ∼= OX , such that all components of X0 are
Kähler. Then either

(I) X0 is a smooth K3 surface;

(II) X0 is a chain of elliptic ruled components with rational surfaces at
each end, and all double curves are smooth elliptic curves;

(III) X0 consists of rational surfaces meeting along rational curves which
form cycles in each component. If Γ is the dual graph of X0, then |Γ|,
the topological support of Γ, is homeomorphic to the sphere S2.
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Aim. Use this classification to study the geometric behaviour at the
boundary of the moduli space F2 of K3 surfaces of degree two.

We begin by studying the moduli space P2 of pairs (S,D), where S is a
K3 surface and D is an ample divisor on S with D2 = 2. Let π : X → ∆
be a semistable degeneration of K3 surfaces with ωX ∼ OX and let D be an
effective divisor on X that is flat over ∆∗ and that induces an ample divisor
Dt = D ∩Xt with D2

t = 2 on a general fibre.

Theorem 2. [SB83] There exists an effective or zero divisor Z supported on
X0 such that D − Z = H is effective and flat over ∆. Furthermore, after
a sequence of elementary modifications have been performed on X we may
assume that H is nef.

Using this, we have a naive description of the fibres at the boundary of
P2:

• X0 is a degenerate fibre of Type I, II or III;

• H0 = H ∩X0 is a nef divisor on X0 with H2
0 = 2.

We henceforth call these conditions (∗).
However, there is a problem with this description of the fibres on the

boundary: Kulikov models of a given degeneration are not unique (i.e. the
same π∗ : X∗ → ∆∗ can be completed to several different Kulikov models
π : X → ∆). Elementary modifications can be used to move between these
birationally equivalent models. This means that if we use the above descrip-
tion of the boundary to compactify our moduli space the resulting space will
not be separated.

Solution. We proceed to the relative log canonical model of the pair
(X,H):

φ : X− → Xc := Proj∆
⊕
n≥0

π∗OX(nH).

Results of the minimal model program show that φ is an isomorphism over
∆∗ and that all of the birationally equivalent Kulikov models map to the
same relative log canonical model. So a better description of the fibres on
the boundary of F2 would be “those (Xc)0 that are the central fibres in
the relative log canonical models of pairs (X,H) satisfying the conclusion of
Theorem 2”.

It “just” remains to calculate these images.
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Lemma 3. [Tho10] The map φ is a birational morphism and furthermore,
writing

(X0)c := Proj
⊕
n≥0

H0(X0,OX0(nH0))

for the log canonical model of X0, we have that (X0)c and (Xc)0 agree.

Sketch proof. This is a consequence of the base point free theorem [Anc87]
and the theorem on cohomology and base change.

In light of this, we set Xc
0 := (X0)c = (Xc)0. This allows us to restrict

our attention to finding the log canonical models of pairs satisfying (∗).

Example 4. We begin by calculating the log canonical model when X0 is
a fibre of Type I (i.e. a smooth K3). Suppose first that H0 is base point
free. Then a simple Riemann-Roch calculation shows that φ0 := φ|X0 is a
birational morphism

φ0 : X0 −→ Xc
0
∼= X6 ⊂ P(1, 1, 1, 3)

that contracts finitely many curves to Du Val singularities. This surface is
the traditional “double cover of P2” that one normally associates with K3
surfaces of degree two.

Example 5. Suppose next that H0 has base points. Then Mayer [May72]
shows that |2H0| is base point free and a Riemann-Roch calculation shows
that φ0 is a birational morphism

φ0 : X0 −→ Xc
0
∼= X2,6 ⊂ P(1, 1, 1, 2, 3),

where the degree two relation does not involve the degree two variable, that
contracts finitely many curves to Du Val singularities. Note that Xc

0 cannot
be expressed as a double cover of P2. Instead, it can be seen as a double
cover of the singular rational surface X2 ⊂ P(1, 1, 1, 2).

In fact, we find that these two cases are essentially all that can occur:

Theorem 6. [Tho10] Let π : X → ∆ be a semistable degeneration of K3
surfaces, with ωX ∼= OX . Let H be a divisor on X that is effective, nef and
flat over ∆, and suppose that H induces an ample divisor Ht on Xt satisfying
H2
t = 2 for t ∈ ∆∗.

Then the morphism φ : X → Xc taking X to the relative log canonical
model of the pair (X,H) maps X0 to one of:

3



• (Hyperelliptic Case) A sextic hypersurface

{z2 − f6(xi) = 0} ⊂ P(1,1,1,3)[x1, x,x3, z].

• (Unigonal Case) A complete intersection

{z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

where f6(0, 0, 0, 1) 6= 0.

Furthermore, we have the following tables that explicitly classify the pos-
sible central fibres:

Table 1: φ(X0) = {z2 − f6(xi) = 0} ⊂ P(1, 1, 1, 3) hyperelliptic.
Type Name f6(xi) Comments

I h Reduced f6 has at worst A-D-E’s.

II 0h Reduced f6 has exactly one Ẽ7 or Ẽ8.

1 l2(xi)f4(xi) l linear, |l ∩ f4| = 4, f4 may have an Ẽ7.
2 q2(xi)f2(xi) q smooth quadric, |q ∩ f2| = 4.
3 f 2

3 (xi) f3 smooth cubic.
III 0h Reduced f6 has exactly one T2,3,r with r ≥ 7 or T2,q,r

with q ≥ 4 and r ≥ 5.
1 l2(xi)f4(xi) l linear, |l ∩ f4| ≤ 3 with multiplicities ≤ 2.
2 q2(xi)f2(xi) q (possibly nodal) quadric, |q ∩ f2| ≤ 4

(< 4 if q smooth) with multiplicities ≤ 2.
3 f 2

3 (xi) f3 cubic with nodal singularities.

Table 2: φ(X0) = {z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1, 1, 1, 2, 3) unigonal.
Type Name f2(xi) Comments

I u Irreducible φ(X0) has at worst RDP’s.

II 0u Irreducible φ(X0) has exactly one Ẽ7 or Ẽ8.
4 l1(xi)l2(xi) li linear, |l1 ∩ l2 ∩ f6| = 3, where φ(X0) may

have an Ẽ8.
III 0u Irreducible φ(X0) has exactly one T2,3,r with r ≥ 7 or

T2,q,r with q ≥ 4 and r ≥ 5.
4 l1(xi)l2(xi) li linear, |l1 ∩ l2 ∩ f6| = 2, where the curve

{f6 = li = 0} may be non-reduced for
exactly one choice of i ∈ {1, 2}.

Note the relationship between the entries in this table and other known
compactifications of the moduli space of K3 surfaces of degree two:

4



• (II.1)-(II.4) correspond to the four Type II boundary components ap-
pearing the Baily-Borel-Satake compactification [Fri84].

• All cases except (III.0) appear in Shah’s [Sha80] GIT compactification,
although several of our cases map to the same GIT points.

Sketch proof of Theorem 6. Recall that, by Lemma 3, we just have to anal-
yse the log canonical model of the pair (X0, H0). Write X0 as a union of
irreducible components X0 = V1 ∪ · · · ∪ Vr and let Hi = H ∩ Vi. Then we
have:

Lemma 7. [Tho10] If H2
i = 0, then Vi is contracted by φ.

This allows us to focus our attention on components Vi with H2
i > 0. We

have:

Theorem 8. [Tho10] After performing a birational modification on X0 that
does not affect the form of its log canonical model, we may assume that for
any surface Vi with H2

i > 0, the linear system |nHi|

• has no fixed components or base locus for n ≥ 2;

• defines a morphism to projective space that is birational onto its image
for n ≥ 3.

Sketch proof. This follows from known facts about anticanonical pairs [Fri83]
and elliptic ruled surfaces [Tho11] if one can prove that Fix(|Hi|) does not
contain any component of the double locus on Vi. This can be proved for the
central fibre of a degeneration of K3 surfaces of degree two, but the proof
does not work for other polarisations (it relies upon the fact that the only
partitions of 2 are (2) and (1, 1)).

To finish proving the theorem, one just has to explicitly calculate cases
corresponding to different positions of surfaces that have H2

i > 0 within X0.
For instance, in the Type II case we have 5 possibilities:

1. There is one component Vi withH2
i = 2, that is rational. This case gives

rise to cases (II.0), (II.2) and (II.4), distinguished by the intersection
number Hi.KVi .

2. There is one component Vi with H2
i = 2, that is elliptic ruled. This

case gives rise to case (II.4), where φ(X0) has a Ẽ8 singularity.

3. There are two components Vi and Vj with H2
i = H2

j = 1, that are both
rational. This gives rise to cases (II.1) and (II.3).
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4. There are two components Vi and Vj with H2
i = H2

j = 1, one of which
is rational and the other of which is elliptic ruled. This case gives rise
to case (II.1), where φ(X0) has a Ẽ7 singularity.

5. There are two components Vi and Vj with H2
i = H2

j = 1, that are both
elliptic ruled. This case leads to a contradiction and cannot occur.
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