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Abstract. These notes were used for the talk given by the author at Fields Institute
on 19th August, 2011.

1. Introduction

Let me thank the organizers for this opportunity of giving a talk. This is a joint work
with S. Mukai at RIMS, Kyoto University. In my talk every variety is over C.

First let me recall the following theorem of Mukai, which classifies the finite groups of
symplectic automorphisms of K3 surfaces.

Theorem 1.1 (Mukai 1988.). For a finite group G, the following properties are equivalent.

(1) G has an effective and symplectic action on some K3 surface.
(2) G is a subgroup of eleven maximal groups G1, · · · , G11 which are explicitly deter-

mined (we omit them).
(3) G has an embedding into the Mathieu group M23 in such a way that the number

of orbits of G on Ω := {1, · · · , 24} is at least 5.

Today we consider a possible extention of this theorem; our goal is to show
a version of this theorem for Enriques surfaces.

We recall that Mathieu groups are the oldest finite simple sporadic groups. As intro-
duced in Kondo’s lecture, M24 is a special subgroup of the symmetric group S24 which acts
quituply transitively on Ω. M23,M22 are therefore defined as successive point stabilizer
subgroups of M24.

There is an another, although closely related, series of Mathieu groups. This is the
small Mathieu group M12 in S12, which acts on Ω+ := {1, · · · , 12} quintuply transitively.
M11 is similarly the one point stabilizer subgroup of M12.

There is a psychological evidence for our goal:

(1) Let G be acting on a K3 surface X. Then H∗(X, Q) is a 24-dimensional represen-
tation of G. This representation is closely related to the natural representation of
M24, as theorem above implies.

(2) Let G be acting on an Enriques surface S. Then H∗(S, Q) is a 12-dimensional
representation of G. The first item in mind, shouldn’t this representation be related
to the natural representation of M12 ?
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2 Enriques surfaces

2. Characters

First we review the K3 case. Let ϕ be a symplectic automorphism of finite order n,
acting on a K3 surface X. Then the following assertions are true.

(1) n = ord(ϕ) 5 8.
(2) # Fix(ϕ) < ∞ if ϕ 6= 1.
(3) (Nikulin) The number of fixed points, or equivalently the Lefschetz number of ϕ,

L(ϕ) := χtop(Fix ϕ) = tr(ϕ∗ |H∗(X,Q)),

depends only on n and is as follows.

n = ord ϕ 1 2 3 4 5 6 7 8

L(ϕ) 24 8 6 4 4 2 3 2

(4) (Mukai) Any g ∈ M23 with ord(g) = n has the same number of fixed points in Ω as
L(ϕ). Namely, H∗(X, Q) and QΩ (the natural representation as subgroup of M24)
has the same characters.

Let us proceed to automorphisms of Enriques surfaces. In what follows we use the
notation

S = X/ε

to denote an Enriques surface S whose covering K3 surface is X, with the covering trans-
formation ε. Recall that S satisfies and is characterized by the properties q(S) = 0, pg(S) =
0, P2(S) = h0(S,OS(2KS)) = 1.

Definition 2.1. σ ∈ Aut(S) is said to be semi-symplectic if it acts on the space H0(S,OS(2KS))
trivially.

An easy fact is that, any automorphism σ of order 2 is semi-symplectic. A harder fact
is that, any automorphism σ of order 3 or 5 is semi-symplectic. Hence also for order 6.
On the other hand, there exists non-semi-symplectic automorphisms of order 4.

We find that the connection to M12 is not so perfect in this case. Let σ be a semi-
symplectic automorphism of order n < ∞.

(1) n = ord(σ) 5 6.
(2) The fixed point set Fix(σ) is discrete for n = 3, but possibly has curves for n = 2.
(3) The Lefschetz number L(σ) varies even when we fix the order n.
(4) As a consequence of (3), we see that semi-symplectic automorphisms does not

necessarily have the same character as the same-ordered element in M11.

More precise description of fixed point sets can be given. Let σ as above. Let P ∈ S
be a fixed point of σ. From the definition of semi-symplectic property, the local action
(dσ)P ∈ GL(TP S) has two possiblities of determinants, namely ±1. We call P with
determinant 1 the symplectic fixed point:

Fix(σ) = Fix+(σ) q Fix−(σ).

Fix−(σ) is the origin from where the diversity of Enriques automorphisms arises.

(1) order n = 2. Fix+(σ) is exactly four points, while Fix−(σ) is a disjoint union of
smooth curves. The Lefschetz number L(σ) takes every even value between −4
and 12.



Mathieu group 3

(2) order n = 3, 5. The fixed point set is discrete and Fix−(σ) = ∅. They have the
same characters as the same-ordered element of M11.

(3) order n = 4, 6. The fixed point set is discrete but possibly Fix−(σ) 6= ∅.

Definition 2.2. Let G be a finite group of semi-symplectic automorphisms of an Enriques
surface S. We say this action is Mathieu if every σ ∈ G has the same L(σ) as the character
of the same-ordered element of M11.

Concretely, this definition requires what follows.

n = ord σ 1 2 3 4 5 6

L(σ) 12 4 3 4 2 1

The lower row presents the number of fixed points of an element g ∈ M11 of same order.

3. Examples

One of the obstacles in the study of Enriques surfaces is the difficulty in giving projective
models of them. Here we give three examples.

Example I. At the beginning Enriques himself described his surfaces as sextic hyper-
surfaces with prescribed (non-normal) singularities. Let T = {x1x2x3x4 = 0} ⊂ P3 be the
coordinate tetrahedron. Let ∪lij = ∪{xi = xj = 0} be the edges of T .

Theorem 3.1. (Enriques) Let S ′ be a sextic surface with ordinary double lines along ∪lij
and no other singularities. Then the desingularization S → S ′ gives an Enriques surface.

The first example comes with this model. Let us consider a general element S ′ of the
linear pencil {a1f1 + a2f2 | (a1 : a2) ∈ P1}, where

f1 = (xy + yz + zx + xt + yt + zt)xyzt = s2s4,

f2 = (x2 + y2 + z2 + t2)xyzt + x2y2z2t2(
1

x2
+

1

y2
+

1

z2
+

1

z2
) = s2

1s4 + s2
3 − 4s2s4.

Here si are fundamental symmetric polynomials of degree i in four variables. On the
surface S ′ and its desingularization S, we have the action of the symmetric group S4

permutating coordinates and the standard Cremona transformation

σ : (x, y, z, t) 7→ (
1

x
,
1

y
,
1

z
,
1

t
).

They constitute the biregular action of the finite group Z/2 × S4 on S. This action is
semi-sympletic and the subgroup G = Z/2 × A4 acts Mathieu-semi-symplectically.

Example II. Next example comes out of the theory of elliptic surfaces. Recall that
every Enriques surface has an elliptic fibration S → P1 with exactly two double fibers.
Conversely any elliptic surface S → P1 with exactly two double fibers and χtop(S) = 12 is
an Enriques surface. They never have a section, hence Weierstrass models, but nevertheless
we can describe Enriques surfaces using this structure.

A rational elliptic surface arises as the Jacobian of an elliptic Enriques surface S. Con-
versely in general S can be reconstructed from R via the logarithmic transformations,
which are although highly transcendental. However, in some important cases we can
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describe these constructions explicitly in an algebro-geometric way. These are given in
papers of Kondo and Hulek-Schütt. We use them.

Let R : y2 = x(x − 1)(x − s2) be the rational elliptic surface with singular fibers I2 +
I2 + I4 + I4 and the Mordell-Weil group Z/2×Z/4. Let G be the group of automorphisms
of this elliptic fibration generated by σ, ι, tα where

σ : (x, y, s) 7→ (
x

s2
,

y

s3
,
1

s
)

ι : (x, y, s) 7→ (x,−y, s)

tα : translations by α ∈ MW (R/P1).

The base change construction using the 2-torsion (x, y) = (0, 0) and fibers Rp, Rσ(p) for
general p gives the action of G on elliptic Enriques surface S/P1 and its subgroup Z/2×Z/4
acts on S Mathieu-semi-symplectically.

Example III. Nikulin and Kondo classified Enriques surfaces S with # Aut(S) < ∞.
The type VII surface in Kondo’s paper (Fano’s surface) has Aut(S) ' S5 and it can be
shown that this is a Mathieu-semi-symplectic action.

4. Main theorem

First we give a remark on the relationship between M12 and M24. The operator domain
Ω has a special 12 + 12 partition Ω+ q Ω−. Then M12 is exactly the setwise stabilizer
subgroup of Ω+.

Our main theorem is as follows.

Theorem 4.1. For a finite group G, the following properties are equivalent.

(1) G has an effective Mathieu-semi-symplectic action on some Enriques surface S.
(2) G is a subgroup of the five maximal groups, A6,S5, 3

2D8, Z/2×A4 and Z/2×Z/4.
(3) G can be embedded in the subgroup S6 of M12 in such a way that, (A) for all

g ∈ G, g has a fixed point in Ω+, or (B) for all g ∈ G, g has a fixed point in Ω−,
or (C) G ' Z/2 × Z/4.

G #G moduli description

Z/2 × Z/4 8 1-dim.
Z/2 × A4 24 1-dim.

32D8 72 point(s) 3-Sylow normalizer in S6

S5 120 point(s) symmetric
A6 360 point(s) alternating

The latter three groups are constructed via lattice-theoretic constructions. An account
of this will be given in the Mukai’s talk in this conference.

Mnemonic: The maximal groups are exactly subgroups of S6 whose orders are not
divisible by 16.

Sketch of Proof: The classification of Mathieu-semi-symplectic groups proceeds as
follows.
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• Step 1. Classification of possible Fix(σ).
• Step 2. Elimination of G by characters.
• Step 3. Elimination of G by geometry.

As an example, let us show that there exist no semi-symplectic action of Z/8 on Enriques
surface S. Suppose that σ is an semi-symplectic automorphism of order 8. Let σ̃ be the
lift to the covering K3 surface X which is a symplectic automorphism of order 8. It has
exactly two fixed points P,Q ∈ X. For the covering transformation ε to act on X freely,
we must have ε(P ) = Q. But by the holomorphic Lefschetz fixed point formula, the local
actions of σ̃ on the tangent spaces at P and Q do not coincide. This is a contradiction.


