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Backprop

Gradient decay / blowup
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A source of the difficulty

Tiny gradient




A source of the difficulty

Tiny gradient




A source of the difficulty

Giant gradient: instability




Hesslan-Free optimization

- A practical large-scale 2" order optimization
technique

* |t can optimize RNNs




Hesslan-Free optimization

A remarkable 2nd-order optimization technique

Partially invert the cuvature using linear
Conjugate Gradient

Only requires matrix-vector products

Use the exact Hessian
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Conjugate Gradient

» Conjugate gradient optimizes quadratic
functions T
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* Only requires computing By products

. - Atstep i, it finds the optimal solution in

span|g,Bg ,B’g,.., B ' g

- Converges in NV steps or less
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Differences from Quasi-Newton
methods

- Quasi-Newton: exact minimization on a very
crude quadratic approximation

» Hessian-Free: partial minimization on an
extremely rich quadratic approximation




Why is HF better than Nonlinear
Conjugate gradient?

Conjugate gradient strongly assumes that the
function is quadratic

Nonlinear CG is a hack: apply CG as is to a
nonlinear function and hope for the best

In contrast, the HF approach says: make the
conditions where CG shines




Applying HF optimization to RNNs

Essentially a straightforward application of
Hessian-free optimization

But it's important to use structural damping:

Normal damping asks the parameters to not
change too much

Structural damping asks internal variables to
not change too much




Structural damping

Take our quadratic approximation, and add a
nonlinear objective that doesn't want the
hidden state sequence to change

Then use a quadratic approximation of this
term

Must do so for CG to be applicable

The resulting can be obtained with no extra
work!




Character-level language modelling

RNNs were, until now, impossibly hard to
optimize

Hessian-Free optimization is really powerful
and can optimize RNNs

Dataset RNN Memoizer
WIKI 1.60 1.66
NYT 1.49 1.48

ML 1.33 1.31




The 500-timesteps multiplication
problem

Shows that the Hessian-Free optimizer has little
problem with Long-Term dependencies
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Cannot be solved without structural damping



Major application

Train an RNN with 2000 units to predict the
next character in Wikipedia
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