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Mean Circulation of Today’s Atmosphere
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Meridional Streamfunction 1979-2001:
Annually and Longitudinally Averaged

[European Centre for Medium Range Weather Forecasts]

Note:  Hadley, Ferrel and Polar Cells. 
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Zonal (Longitudinal) Wind 1979-2001:
Annually and Longitudinally Averaged

[European Centre for Medium Range Weather Forecasts]

 

Note:  Trade Winds and Jet Streams.
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PRESENT-DAY CLIMATE CHANGES

Intergovernmental Panel on Climate Change
[IPCC Report 2007 and beyond]

The mean global temperature is rising. 

The poles are warming faster than the tropics. 

More rain in equatorial regions, less in subtropics.

The Hadley cells are expanding poleward. 

The Hadley circulation is slowing. 

The jet streams are moving poleward. 

7



Understanding the Causes
of  Today’s Climate Change

Mean global warming is believed to be driven 
by greenhouse gas buildup (anthropogenic). 

Enhanced polar warming is caused by positive 
feedbacks, such as a decrease in albedo due 
to the melting of ice caps. 

There is no consensus on the causes of the 
changes in Hadley cells and jet streams. 
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PALEOCLIMATES
The Earth has experienced dramatically 
different climate  “modes” in its geological 
history. 

The two dominant modes of the past half-
billion years are often called “Greenhouse 
Climate” and “Icehouse Climate”. 

Better knowledge of paleoclimate changes will 
help us to understand modern day climate 
changes,  and vice-versa. 



Greenhouse Climate Mode
Mean annual temperature (MAT) was a few degrees  
warmer than today.  (But means can mislead.)

The global climate was more EQUABLE than today.          
Equable climate means: 

1. Warmer winters without much warmer 
summers;   i.e.  low seasonality.

2. Low temperature gradient,  pole-to-equator.

Most of the higher MAT is due to the warmer 
winters and warmer polar regions.   



Greenhouse Climate dominated the 
Mesozoic “Age of Dinosaurs” 240-65 Mya

 



Icehouse Climate Mode
Permanent polar icecaps (all year).
Large pole-to-equator temperature gradient.
Cold winters and warm/hot summers for 
mid-latitudes of Earth;  i.e.  high seasonality.
Equatorial region has climate similar to that in 
the greenhouse climate mode. 
This “icehouse climate mode” has been 
dominant only in the past 30 million years. 
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Outstanding Questions 
of Paleoclimatology

How can such different but stable climate 
modes both exist on the same Earth? 

Why has the Earth “preferred” greenhouse 
to icehouse climate for most of 250 My?

What has caused abrupt changes between 
greenhouse and icehouse climate modes? 
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Our
Mathematical

Model



Question

15

Can the mean behaviour of the 
Hadley cells and atmospheric flow 
be replicated in a simple model 
based on  convection,  rotation  
and  spherical geometry ? 



Basic Components of the 
Mathematical Model

Navier-Stokes PDE in rotating spherical shell. 

Boussinesq fluid [density varies linearly with 
temperature]. 

Incompressible fluid for convenience.

Convection is driven by the latitudinal 
temperature gradient on the inner boundary. 
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Rotating spherical shell of fluid 
differentially heated on the interior boundary
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Averaged solar heating
of the rotating tilted earth
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Navier-Stokes Boussinesq Equations

Lewis and Langford 7

the fluid is assumed to be

ρ = ρ0 (1− α (T − Tr)) , (1)

where ρ is the density of the fluid, T is the temperature, α is the (constant) coefficient of

thermal expansion, and ρ0 is the density at a reference temperature Tr. The dimensionless

quantity α (T − Tr) is assumed to be small. In the Boussinesq approximation the fluid can

be considered to be incompressible, which is a significant simplification.

The fluid is contained within a spherical shell with inner sphere of radius ra and outer

sphere of radius rb. We assume gravity acts everywhere in the radial direction. The spherical

shell rotates at rate Ω about the polar axis, and the inner and outer spheres rotate at the

same rate. The equations are written in spherical polar coordinates in a frame of reference

co-rotating at rate Ω with the shell. The radial, polar, and azimuthal coordinates are denoted

r, θ, and ϕ, respectively, with unit vectors er, eθ and eϕ; see Figure 1.

The Navier-Stokes Boussinesq equations describing the evolution of the vector fluid ve-

locity, u = u(r, θ, ϕ, t) = wer + veθ + ueϕ and the temperature of the fluid, T = T (r, θ, ϕ, t)

are:

∂u

∂t
= ν∇2u− 2Ω× u + [ger + Ω× (Ω× r)] α (T − Tr)−

1

ρ0
∇p− (u ·∇)u, (2)

∂T

∂t
= κ∇2T − (u ·∇) T, (3)

∇ · u = 0, (4)

where Ω = Ω (cos θer − sin θeθ) is the rotation vector, Ω = |Ω| is the rate of rotation

about the polar axis, p is the pressure deviation from p0 = ρ0g(R − r) + ρ0Ω2r2 sin2 θ/2,

r = rer + θeθ + ϕeϕ, ν is the kinematic viscosity, κ is the coefficient of thermal diffusivity,

g is the gravitational acceleration, ∇ is the usual gradient operator in spherical coordinates,

u is the azimuthal fluid velocity, often referred to as the zonal velocity, v is the polar fluid

velocity, and w is the radial fluid velocity. The spatial domain is defined by ra < r < rb,

0 ≤ ϕ < 2π, and 0 < θ < π. Thus, θ = 0, π correspond to the north and south poles of

the shell respectively, while θ = π/2 corresponds to the equator.1 The equations can be

rewritten in planetary coordinates by performing the change of variable θ → π/2 − θ. The

values of ν and κ are chosen to be those of the fluid at the reference temperature Tr, and

it is assumed that the difference between the temperature of the fluid and Tr is everywhere

small enough so that ν and κ can be considered as constants. We have included the effects of

centrifugal bouyancy in the equations via the term Ω× (Ω× r). All dimensional quantities

are measured in CGS units.
1Planetary coordinates differ from spherical polar coordinates only in the range of the polar coordinate.

where  u is the velocity vector,  T is temperature,  Ω is the 
rotation vector,  p is pressure deviation,  ν is kinematic viscosity, 
κ is thermal diffusivity,  g is gravitational acceleration and  ∇ is 

the gradient operator. 

Here                                                   is the buoyancy force. 
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Boundary Conditions
Inner Boundary

T  varies with 

Non-slip BC for velocity  u
Outer Boundary

T  is insulated

Stress-free BC for velocity  u

Lewis and Langford 8

As described in the Introduction, the boundary conditions are

u = 0, T = Tr −∆T cos(2θ) on r = ra,
∂u

∂r
= 0,

∂v

∂r
= 0, w = 0,

∂T

∂r
= 0 on r = rb, (5)

with 2π-periodicity in the azimuthal variable ϕ.

In this paper we will investigate flows that preserve the symmetries of the model, that is,

are invariant under rotation about the polar axis (i.e. they are independent of the azimuthal

variable ϕ), and invariant under reflection across the equator (i.e. across the line defined by

θ = π/2). Therefore, we study solutions of (2) – (5) in the form

u = u(r, θ, t) = u(r, π − θ, t), v = v(r, θ, t) = v(r, π − θ, t),

w = w(r, θ, t) = w(r, π − θ, t), T = T (r, θ, t) = T (r, π − θ, t), (6)

In this context, solutions that are independent of ϕ are often called axisymmetric. The

assumed symmetries significantly simplify the analysis. We may use the analysis of the

symmetric system as a starting point for an analysis of the full system. Although it is not

written explicitly, the solutions also depend on the parameters.

If we scale the radial coordinate as

r → Rr�, (7)

where R = rb − ra is the gap width, write

T → T � + Tr −∆T cos(2π), (8)

substitute into (2) – (4), and drop the primes, we obtain the following equations describing

the evolution of the fluid velocity u = w(r, θ, t)er+v(r, θ, t)eθ+u(r, θ, t)eϕ, pressure deviation

p = p(r, θ, t) and temperature deviation T = T (r, θ, t):

∂u

∂t
= νs∇2

0u− νs
1

r2 sin2 θ
u− 2Ω (sin θw + cos θv)− 1

R

�
(u ·∇0) u +

cos θ

r sin θ
uv +

uw

r

�
(9)

∂v

∂t
= νs∇2

0v − νs

�
1

r2 sin2 θ
v − 2

r2

∂w

∂θ

�
+ 2Ω cos θu− 1

ρ0Rr

∂p

∂θ

−
�
αΩ2Rr sin θ cos θ

�
(T −∆T cos 2θ)− 1

R

�
(u ·∇0) v − cos θ

r sin θ
u2 +

vw

r

�
(10)

∂w

∂t
= νs∇2

0w − νs

�
2

r2

cos θ

sin θ
v +

2

r2

∂v

∂θ
+

2

r2
w

�
+ 2Ω sin θu− 1

ρ0Rr

∂p

∂r

−α
�
Ω2Rr sin2 θ + g

�
(T −∆T cos 2θ)− 1

R

�
(u ·∇0) w − 1

r

�
u2 + v2

��
(11)

∂T

∂t
= κs∇2

0T +
4∆Tκs

r2

�
cos 2θ + cos2 θ

�
+

2∆T

Rr
sin 2θv − 1

R
(u ·∇0) T (12)

∇0 · u =
∂w

∂r
+

2

r
w +

1

r

∂v

∂θ
+

cos θ

r sin θ
v = 0 (13)
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Numerical Analysis

Discretize on NxN grid. 

Get                    sparse nonlinear equations. 

Solve nonlinear system by Newton iteration. 

Use Keller continuation from the trivial 
solution, which is known exactly at              .

Lewis and Langford 11

If we write

u = u� + u0, ξ = ξ� + ξ0, T = T � + T0, (19)

where u0, ξ0, T0 is a steady solution, and substitute into the three equations for u, ξ, and

T , we obtain the perturbation equations in u�, ξ�, and T �. The trivial solution satisfies the

perturbation equations, and it corresponds to u0, ξ0, T0. If the perturbation equations are

linearized and we assume that the unknown functions may be written as

u�(r, θ, t) = eλtψu(r, θ), ξ�(r, θ, t) = eλtψξ(r, θ), T �(r, θ, t) = eλtψT (r, θ), (20)

then a linear eigenvalue problem is obtained. Consequently, the eigenvalues λ can be found

from the generalized eigenvalue problem of the form

λA0Ψ = L0Ψ, (21)

where

Ψ =




ψu

ψξ

ψT ,





is the eigenfunction, and A0 and L0 are 3× 3 matrices of linear differential operators.

4 Numerical methods

4.1 Discretization

Because it is not possible to find analytic solutions for either the steady solution or the

eigenvalue problem, the solutions are approximated numerically. Second order centered

finite differencing is used to discretize the spatial derivatives. We approximate the value

of the unknown functions at the locations of N × N uniformly spaced grid points in the

interior of the domain. Sufficient accuracy is obtained from approximating the solutions on

a uniform grid because the boundary layers in the steady solution are not severe (see below).

The values of u and T on the outer boundary and on the equator, as well as those of T at

the pole, are not determined by the boundary conditions, and must also be considered as

unknowns. This leads to discretized solution vectors of size 3N2 + 5N . Discretization of the

steady equations for u, ξ, and T leads to a system of nonlinear algebraic equations that can

be solved by Newton iteration and Keller continuation as explained in Section 4.2, to find

an approximation of the steady solution.

For the numerical approximation of the eigenvalues, the linearized perturbation equations

are discretized, and thus the values of the steady solution are only needed at specific locations

(the grid points) and the computed approximations are used. That is, the linearization is

made about the approximate solution. Thus, upon discretization the partial differential

eigenvalue problem becomes a generalized matrix eigenvalue problem.

Lewis and Langford 12

4.2 Solution techniques

We are interested in computing the steady solution for a wide range of parameter values. To

do this, we implement pseudo-arclength continuation with the Keller correction condition

[7], and use a Newton method to solve the resulting equations. If a solution is known for a

particular set of parameter values, then this method can be used effectively to follow solutions

as a parameter is varied, i.e. to find a solution curve (with respect to the parameter).

Here, we know that for ∆T = 0, the trivial solution satisfies the equations for u, ξ and

T . Thus, for ∆T small, the trivial solution is a reasonable prediction of the solution, and

Newton’s method is used for the correction. In psuedo-arclength contiuation, the parame-

ter is considered as an unknown, and initial guesses of the solution are found by following

the tangent, or a secant line approximation, to the solution curve. Increments are made

approximately along the solution curve, and not by incrementing the parameter. The Keller

condition ensures that the corrections to the initial guesses occur approximately perpen-

dicularly to the tangent. This method is particularly useful because it is able to compute

solutions along the solution curve even when there is a limit point on the curve, i.e. when the

solution curve turns back on itself. In practice, the evaluation of the Jacobian is expensive,

and therefore, in order to reduce the number of Jacobian evaluations, we use a quasi-Newton

method instead of Newton’s method.

The generalized matrix eigenvalue problem that results from the discretization of (21)

is solved in Matlab using the implicitly restarted Arnoldi method [17], which is a memory-

efficient iterative method for finding a specified number of the largest eigenvalues. A gener-

alized Cayley transformation [7] is made so that the Arnoldi iteration finds the eigenvalues

of interest. The parameters of the transformation can be chosen to improve convergence

properties. In particular, the generalized Cayley transformation

C(L,A) = (L− α1A)
−1

(L− α2A) (22)

maps eigenvalues λ of the generalized matrix eigenvalue problem λAv = Lv to eigenvalues σ

of the transformed matrix C(L,A), such that the eigenvalues λ with Real(λ) > (α1 + α2) /2

are mapped to the eigenvalues σ with |σ| > 1, where α1 and α2 are the real parameters of the

Cayley transformation. The matrix C(L,A) does not have to be formed explicitly, because

the Arnoldi iteration only requires matrix-vector products involving C(L,A) [17]. Thus, the

full sparseness properties of L and A can be exploited, and computer memory requirements

can be reduced.
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Bifurcation Analysis
Use the temperature difference          as both 
bifurcation parameter and Keller continuation 
parameter. 

Monitor eigenvalues of the linearized system to 
determine bifurcation and stability as          
varies. 

Identify both symmetry-preserving and 
symmetry-breaking bifurcations. 
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Stability Analysis

Calculate the leading eigenvalues of the 
linearized system. 

Use implicitly restarted Arnoldi method. 

Find critical (zero) eigenvalues. 

Over 3000 lines of code. 
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OUR MODEL 
RESULTS

Ref.  Gregory M. Lewis and William F. Langford (2008). 
Hysteresis in a rotating differentially heated spherical 
shell of Boussinesq fluid.  SIAM J.  Applied Dynamical 
Systems,  V. 7,  pp. 1421-1444.
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HADLEY CELL CHANGES

As          increases,  the Hadley cell shrinks toward the 
equator and the Ferrel and polar cells appear.
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efficient iterative method for finding a specified number of the largest eigenvalues. A gener-

alized Cayley transformation [7] is made so that the Arnoldi iteration finds the eigenvalues

of interest. The parameters of the transformation can be chosen to improve convergence

properties. In particular, the generalized Cayley transformation

C(L,A) = (L− α1A)
−1

(L− α2A) (22)

maps eigenvalues λ of the generalized matrix eigenvalue problem λAv = Lv to eigenvalues σ

of the transformed matrix C(L,A), such that the eigenvalues λ with Real(λ) > (α1 + α2) /2

are mapped to the eigenvalues σ with |σ| > 1, where α1 and α2 are the real parameters of the

Cayley transformation. The matrix C(L,A) does not have to be formed explicitly, because

the Arnoldi iteration only requires matrix-vector products involving C(L,A) [17]. Thus, the

full sparseness properties of L and A can be exploited, and computer memory requirements

can be reduced.
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 One-Cell Pattern for Small 

A single large Hadley cell extends from equator to pole. 

Note the jet stream at high altitude and trade winds in 
the tropics.  
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4.2 Solution techniques

We are interested in computing the steady solution for a wide range of parameter values. To

do this, we implement pseudo-arclength continuation with the Keller correction condition

[7], and use a Newton method to solve the resulting equations. If a solution is known for a

particular set of parameter values, then this method can be used effectively to follow solutions

as a parameter is varied, i.e. to find a solution curve (with respect to the parameter).

Here, we know that for ∆T = 0, the trivial solution satisfies the equations for u, ξ and

T . Thus, for ∆T small, the trivial solution is a reasonable prediction of the solution, and

Newton’s method is used for the correction. In psuedo-arclength contiuation, the parame-

ter is considered as an unknown, and initial guesses of the solution are found by following

the tangent, or a secant line approximation, to the solution curve. Increments are made

approximately along the solution curve, and not by incrementing the parameter. The Keller

condition ensures that the corrections to the initial guesses occur approximately perpen-

dicularly to the tangent. This method is particularly useful because it is able to compute

solutions along the solution curve even when there is a limit point on the curve, i.e. when the

solution curve turns back on itself. In practice, the evaluation of the Jacobian is expensive,

and therefore, in order to reduce the number of Jacobian evaluations, we use a quasi-Newton

method instead of Newton’s method.

The generalized matrix eigenvalue problem that results from the discretization of (21)

is solved in Matlab using the implicitly restarted Arnoldi method [17], which is a memory-

efficient iterative method for finding a specified number of the largest eigenvalues. A gener-

alized Cayley transformation [7] is made so that the Arnoldi iteration finds the eigenvalues

of interest. The parameters of the transformation can be chosen to improve convergence

properties. In particular, the generalized Cayley transformation

C(L,A) = (L− α1A)
−1

(L− α2A) (22)

maps eigenvalues λ of the generalized matrix eigenvalue problem λAv = Lv to eigenvalues σ

of the transformed matrix C(L,A), such that the eigenvalues λ with Real(λ) > (α1 + α2) /2

are mapped to the eigenvalues σ with |σ| > 1, where α1 and α2 are the real parameters of the

Cayley transformation. The matrix C(L,A) does not have to be formed explicitly, because

the Arnoldi iteration only requires matrix-vector products involving C(L,A) [17]. Thus, the

full sparseness properties of L and A can be exploited, and computer memory requirements

can be reduced.
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   Three-Cell Pattern for Large 
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4.2 Solution techniques

We are interested in computing the steady solution for a wide range of parameter values. To

do this, we implement pseudo-arclength continuation with the Keller correction condition

[7], and use a Newton method to solve the resulting equations. If a solution is known for a

particular set of parameter values, then this method can be used effectively to follow solutions

as a parameter is varied, i.e. to find a solution curve (with respect to the parameter).

Here, we know that for ∆T = 0, the trivial solution satisfies the equations for u, ξ and

T . Thus, for ∆T small, the trivial solution is a reasonable prediction of the solution, and

Newton’s method is used for the correction. In psuedo-arclength contiuation, the parame-

ter is considered as an unknown, and initial guesses of the solution are found by following

the tangent, or a secant line approximation, to the solution curve. Increments are made

approximately along the solution curve, and not by incrementing the parameter. The Keller

condition ensures that the corrections to the initial guesses occur approximately perpen-

dicularly to the tangent. This method is particularly useful because it is able to compute

solutions along the solution curve even when there is a limit point on the curve, i.e. when the

solution curve turns back on itself. In practice, the evaluation of the Jacobian is expensive,

and therefore, in order to reduce the number of Jacobian evaluations, we use a quasi-Newton

method instead of Newton’s method.

The generalized matrix eigenvalue problem that results from the discretization of (21)

is solved in Matlab using the implicitly restarted Arnoldi method [17], which is a memory-

efficient iterative method for finding a specified number of the largest eigenvalues. A gener-

alized Cayley transformation [7] is made so that the Arnoldi iteration finds the eigenvalues

of interest. The parameters of the transformation can be chosen to improve convergence

properties. In particular, the generalized Cayley transformation

C(L,A) = (L− α1A)
−1

(L− α2A) (22)

maps eigenvalues λ of the generalized matrix eigenvalue problem λAv = Lv to eigenvalues σ

of the transformed matrix C(L,A), such that the eigenvalues λ with Real(λ) > (α1 + α2) /2

are mapped to the eigenvalues σ with |σ| > 1, where α1 and α2 are the real parameters of the

Cayley transformation. The matrix C(L,A) does not have to be formed explicitly, because

the Arnoldi iteration only requires matrix-vector products involving C(L,A) [17]. Thus, the

full sparseness properties of L and A can be exploited, and computer memory requirements

can be reduced.
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Hadley, Ferrel and Polar cells all exist. 

The jet stream has moved toward the equator. 
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Compare the Model with Real Data
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Implications for 
Today’s Climate Change

A decrease in pole-to-equator temperature 
gradient can cause: 

1. Poleward expansion of the Hadley cells. 
2. Slowing of the Hadley circulation.  
3. Poleward movement of jet streams.

All of these changes are occurring today. 
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Changes in other parameters 
(rotation rate, radii, ...) do not alter 
the conclusions.  This behaviour of 
Hadley cells is robust in the model. 

The changes in Hadley circulation 
depend strongly on small changes 
in the temperature gradient.

Furthermore:
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Implications for 
Paleoclimate Change

Major changes in the Hadley cells could have 
caused dramatic changes in paleoclimate. 

For very small  ΔT  our model has a single 
large Hadley cell from equator to pole. 

We propose that a single large Hadley cell 
would yield an equable climate similar to that 
of the Mesozoic Era. 
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But there is more   
to our model!

The mathematical model exhibits        
hysteresis bifurcation. 

Hysteresis is a nonlinear phenomenon in 
which there is co-existence of two different 
stable states (or modes), with abrupt jumps 
from either state to the other state. 

In the model, the two states could represent 
greenhouse and icehouse climates. 
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HYSTERESIS BIFURCATION (Cusp)

R

∆T

A small change in        can cause a jump in state. 

Lewis and Langford 12

4.2 Solution techniques

We are interested in computing the steady solution for a wide range of parameter values. To

do this, we implement pseudo-arclength continuation with the Keller correction condition

[7], and use a Newton method to solve the resulting equations. If a solution is known for a

particular set of parameter values, then this method can be used effectively to follow solutions

as a parameter is varied, i.e. to find a solution curve (with respect to the parameter).

Here, we know that for ∆T = 0, the trivial solution satisfies the equations for u, ξ and

T . Thus, for ∆T small, the trivial solution is a reasonable prediction of the solution, and

Newton’s method is used for the correction. In psuedo-arclength contiuation, the parame-

ter is considered as an unknown, and initial guesses of the solution are found by following

the tangent, or a secant line approximation, to the solution curve. Increments are made

approximately along the solution curve, and not by incrementing the parameter. The Keller

condition ensures that the corrections to the initial guesses occur approximately perpen-

dicularly to the tangent. This method is particularly useful because it is able to compute

solutions along the solution curve even when there is a limit point on the curve, i.e. when the

solution curve turns back on itself. In practice, the evaluation of the Jacobian is expensive,

and therefore, in order to reduce the number of Jacobian evaluations, we use a quasi-Newton

method instead of Newton’s method.

The generalized matrix eigenvalue problem that results from the discretization of (21)

is solved in Matlab using the implicitly restarted Arnoldi method [17], which is a memory-

efficient iterative method for finding a specified number of the largest eigenvalues. A gener-

alized Cayley transformation [7] is made so that the Arnoldi iteration finds the eigenvalues

of interest. The parameters of the transformation can be chosen to improve convergence

properties. In particular, the generalized Cayley transformation

C(L,A) = (L− α1A)
−1

(L− α2A) (22)

maps eigenvalues λ of the generalized matrix eigenvalue problem λAv = Lv to eigenvalues σ

of the transformed matrix C(L,A), such that the eigenvalues λ with Real(λ) > (α1 + α2) /2

are mapped to the eigenvalues σ with |σ| > 1, where α1 and α2 are the real parameters of the

Cayley transformation. The matrix C(L,A) does not have to be formed explicitly, because

the Arnoldi iteration only requires matrix-vector products involving C(L,A) [17]. Thus, the

full sparseness properties of L and A can be exploited, and computer memory requirements

can be reduced.
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Figure 11: An example of a two-cell circulation pattern observed for heating parameter ∆T =, and gap
width R = 35. (a) The stream function ξ; flow tends to follow contours, (b) the azimuthal (or zonal velocity)
u, and (c) the temperature deviation T from the temperature prescribed on the lower boundary. The inner
and outer boundaries have been mapped to r = 1 and r = 2, respectively.

L0 is given by

L0V = LV + N(V, U0) + N(U0, V ). (25)

That is, we have

L0Ψ = 0, (26)

where Ψ is the eigenfunction corresponding to the zero eigenvalue.

Under certain conditions on L0, the dependent variable U can be written in the form

U = wΨ + Φ, (27)

where w ∈ � and thus wΨ ∈ span{Ψ}, and Φ ∈ Es. Here Es is called the stable subspace,

and is the space spanned by all eigenfunctions corresponding to eigenvalues with negative

real part.

If we write U as in (27) then under certain technical conditions, a centre manifold and

normal form reduction can be performed on (23) to obtain the equation on the centre man-

ifold in normal form

ẇ = β1 + β2w + aw
2
+ cw

3
+ O(w

4
), (28)

where a and c are coefficients of the normal form and β1 and β2 are unfolding parameters

that are in general functions of the parameters ∆T and R. It can be shown that if c �= 0,

then neglecting the terms of O(w4
) do not change the qualitative features of the solutions.

The centre manifold and normal form theories state that for (∆T,R) near (∆Tc, Rc) and

when the solutions are in some sense small, then the dynamics of (23) can be deduced from

(28). In particular, solutions of (28) are in one-to-one correspondence with those of (23).



CUSP BIFURCATION IN THE MODEL
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Hysteresis Bifurcation Theorem
A hysteresis bifurcation point exists if:

1. There is an equilibrium point. 

2. The linearization at the equilibrium point has a simple 
zero eigenvalue. 

3. The coefficient of the second-order term of the 
normal form on the center manifold vanishes. 

4. Certain other dominant terms in the normal form 
are nonzero. 
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Result of Greg Lewis

A hysteresis bifurcation point  EXISTS  in this 
model.  It yields discontinuities in “climate”, as the 
pole-to-equator temperature difference varies.

Proof:   Lewis showed that the conditions of the 
Hysteresis Bifurcation Theorem are satisfied by 
the model equations.
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The model suggests:

Polar cooling may cause a global 
climate  bifurcation,  in which 
climate jumps abruptly from one 
climate mode to another. 
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Where are we today?

In the model, 
we are on the 
upper branch, 
moving to the 
left (the poles 
are warming). 

Next question:  
How long 
before we fall 
over the edge? R

∆T
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R

∆T

Sudden transition from icehouse to greenhouse? 
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The Pliocene Paradox 
(3-5 million years ago)

Greenland was ice-free, with palm trees on its 
southern coast [D. Greenwood]. 

There were temperate rain forests on Canada’s 
far northern arctic coastline [J. Basinger]. 

Yet,  all the “driving forces” were essentially the 
same as today’s:  CO2 levels,  solar radiation,  
Earth’s axis tilt and orbit, continent positions, 
ocean currents, etc.
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Pliocene Paradox 2.0

The south pole switched from greenhouse 
climate to icehouse climate about 28 Mya 
(Oligocene). 
The north pole remained in a greenhouse 
climate until about 3 Mya (early Pliocene). 
Thus the north-south symmetry of the 
Earth’s climate was broken for 25M years. 
Symmetry was restored when the north pole 
switched to icehouse climate about 3 Mya.



Work in Progress

Drop the assumption of north-south 
symmetry in the mathematical model.
Investigate the existence and stability of 
asymmetric modes. 
Study the relationship between asymmetric 
Hadley cells and asymmetric climates.



FUTURE WORK

Add compressibility;  assume an ideal gas law;  break 
the rotational symmetry.  

Include in the model the “atmospheric conveyor belt” 
positive feedback.  (Hadley cells carry heat from the 
equator to higher latitudes.) 

Add greenhouse gases and albedo to the model and 
compute Hopf bifurcations (ice age cycles). 
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Thank you!
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