Dynamic Consumption and Portfolio Choice with Ambiguity about Stochastic Volatility

Gonçalo Faria FEP-UP, CEF-UP, RGEA-U.Vigo

> João Correia-da-Silva FEP-UP, CEF-UP

> > Cláudia Ribeiro FEP-UP, CEF-UP

6th World Congress of the Bachelier Finance Society Toronto, Canada

June 24th, 2010

Outline

- ☐ Outline:
 - Concept: Ambiguity vs Risk
 - Motivation
 - Model
 - Analytical Solution
 - Simulation Results
 - Conclusions

1. Concept: Ambiguity vs Risk.

- □ Knight (1921): conceptual distinction between ambiguity and risk.
 - □ Risk: uncertainty that can be described by a single probability distribution. "known unknown".
 - □ Ambiguity: uncertainty than cannot be described by a single probability distribution. "unknown unknown".

□ Ellsberg (1961): experimental evidence supporting Knightian distinction between ambiguity and risk – Ellsberg Paradox.

1. Concept: Ambiguity vs Risk.

Variation on Ellsberg (1961, QJE) 2-colour, 2-urn experiment:

- □ **Question:** Placed in a choice situation, which urn does the typical agent choose to drawn a ball?
- □ Answer: Strict preference for betting on the Risky urn. Why?
 - □ The chance of winning (50% in this case) is "safe" and well understood.
- □ Implication from RR > AR and RB > AB:
 - □ As Pr(RR)=Pr(RB)=0.5, then implied "subjective" probabilities are Pr(AR) < 0.5 and Pr(AB) < 0.5. Paradox!
 - □ Standard Additive Probability can not represent Ellsberg evidence about agent's behavior in such uncertain context.

1. Concept: Ambiguity vs Risk.

- ☐ Mainstream Theory of Choice in Economics for the last 60 years:
 - □ (EU) Expected Utility Theory (von Neumann and Morgenstern, 1944):
 - □ Probabilities of the possible states of nature are known.
 - □ (SEU) Subjective Expected Utility Theory (Savage, 1954):
 - □ Probabilities are not necessarily known, but agents still behave as if they were maximizing an expected utility function, using their subjective probability beliefs.
 - □ Both EU and SEU ignore ambiguity, reducing all uncertainty to risk.
- ☐ Gradually, ambiguity is being incorporated in decision theory since 90's:
- (i) further empirical evidence; (ii) theoretical developments (Multiple-Priors Approach and Robust Control).

2. Motivation: Research Question.

- □ What is the impact on the dynamic consumption and portfolio choices from the ambiguity about the stochastic precision*?
 - ☐ Is stochastic precision relevant to portfolio choice?

^{*} Note: precision is the reciprocal of variance (volatility) of the risky asset's return.

2.1 Motivation: Literature Review.

- □ Large literature on the portfolio choice problem without ambiguity considerations.
 - □ Few of those works explore the problem with stochastic precision.
- □ Few and recent literature focuses on portfolio choice with ambiguity aversion, but:
 - □ Ambiguity is about the expected (excess) return of the risky asset.
 - □ No explicit stochastic process for precision.

2.2 Motivation: Ambiguity about Expected Precision?

☐ This paper introduces Ambiguity aversion: □ within a setting with an explicit process for the stochastic precision. □ about the expected value of precision of the risky asset's return. □ Why? ☐ Precision: not observed by investors - intuitive reason to assume they may feel ambiguous on it. □ Precision's expected value: the most intuitive parameter to which investors pay attention.

■ Analytical tractability.

3 Model: Major Guidelines - Investment Opportunity Set.

- □ Chacko and Viceira (2005) base model:
 - ☐ For dynamic consumption and portfolio choice.
 - ☐ Instantaneous return of the risky asset given by:

$$\frac{dS_t}{S_t} = \mu dt + \sqrt{\frac{1}{y_t}} dW_S \tag{1}$$

 \square Precision y_t follows a mean-reverting square-root process described by :

$$dy_t = \kappa \left(\theta - y_t\right) dt + \sigma \sqrt{y_t} dW_y \,, \tag{2}$$

where:

- μ expected return of the risky asset
- $E(y_t) = \theta$;
- W_s and W_y are standard Brownian Motions; assumed $dW_y dW_S = \rho dt$, $\rho > 0$.

3 Model: Major Guidelines - Preferences

□ Preferences are represented by the Stochastic Differential Utility function introduced by Duffie and Epstein (1992), with the utility process:

$$J = E_t \left[\int_{t}^{\infty} f(C_s, J_s) \, ds \right], \quad (3)$$

where:

- C_s current consumption
- J_s continuation utility on C at time t=s
- $f(C_s, J_s)$ normalized aggregator that generates J . It is a function ot, among others:
 - $\gamma > 0$ coefficient of relative risk aversion
 - $\psi > 0$ elasticity of intertemporal substitution of consumption
 - $\beta > 0$ the rate of time preference.

3.1 Model: Our contribute.

Our contribution:

- □ Assume ambiguity about $E(y_t) = \theta$.
- □ Following Gilboa and Schmeidler (1989) Max-Min framework and applying the Saddle Point Theorem [Fan(1953), Sion(1958)]:
 - \square Investors have a set of priors, the interval $[\underline{\theta}, \overline{\theta}]$, with $0 < \underline{\theta} \le \theta \le \overline{\theta}$
 - □ Investors consider $\theta^* \in [\underline{\theta}, \overline{\theta}]$ such that it minimizes the maximized expected utility:

$$\theta^* = \underset{\hat{\theta} \in [\underline{\theta}, \overline{\theta}]}{\operatorname{argmin}} J_{t_0}(\hat{\theta}). \tag{4}$$

3.2 Model: Dynamic Optimization Problem.

The dynamic consumption-portfolio problem with stochastic precision faced by the investor that is both θ – ambiguity and risk averse can be written as:

$$\min_{\hat{\theta} \in \left[\underline{\theta}, \overline{\theta}\right]} \left\{ \max_{\pi, C} E_{t_0} \left[\int_{t_0}^{\infty} f\left(C_s, J_s\right) ds \right] \right\} \\
s.t.$$
(5)

$$dX_t = \left[\pi_t \left(\mu - r\right) X_t + r X_t - C_t\right] dt + \pi_t \sqrt{\frac{1}{y_t}} X_t dW_S ,$$
$$dy_t = \kappa \left(\hat{\theta} - y_t\right) dt + \sigma \sqrt{y_t} dW_y .$$

where:

- X_t wealth (with $X_{t0} > 0$)
- π_t fraction of wealth invested in the risky asset.

4 Problem Solution: Guidelines.

□ For each $\hat{\theta}$, the maximization problem is a stochastic continuous-time optimal control problem with two state variables (X_t and Y_t) and two control variables (X_t and X_t). The corresponding Bellman equation is:

$$0 = \max_{\pi,\sigma} \left\{ f(C_s, J_s) + J_X (\pi_t (\mu - r) X_t + r X_t - C_t) + J_y \kappa (\hat{\theta} - y_t) + \frac{1}{2} J_{XX} \pi_t^2 \frac{1}{y_t} X_t^2 + \frac{1}{2} J_{yy} \sigma^2 y_t + J_{Xy} \pi_t \rho \sigma X_t \right\}.$$
(6)

where $J_{(\cdot)}$ are partial derivatives.

 \Box Chacko and Viceira (2005) found an exact solution when $\psi=1$ and an approximate solution for $\psi\neq 1$. We study θ – ambiguity in both scenarios.

When $\psi = 1$ the value function J that solves (6), for any value of $\hat{\theta}$, is given by:

$$J\left(\hat{\theta}, X_t, y_t\right) = exp\left\{Ay_t + B(\hat{\theta})\right\} \frac{X_t^{1-\gamma}}{1-\gamma}, \tag{7}$$

where *A* and *B* are constants depending on parameters describing investors preferences and the investment opportunity set. Optimal consumption and portfolio rules are given by:

$$C_t = \beta X_t \,, \tag{8}$$

$$\pi_t = \frac{1}{\gamma} \left(\mu - r \right) y_t + \frac{\sigma \rho}{\gamma} A y_t \,. \tag{9}$$

From (8), optimal consumption choice does not depend on y_t . From (9) and considering $E(y_t) = \theta$, the mean optimal allocation in the risky asset is given by:

$$\pi_{\theta} = \frac{1}{\gamma} \left(\mu - r \right) \theta + \frac{\sigma \rho}{\gamma} A \theta \tag{10}$$

- \Box What happens with the introduction of θ ambiguity aversion?
 - □ New θ value (= θ^*) in accordance with (4):

$$\theta^* = \underset{\hat{\theta} \in [\underline{\theta}, \overline{\theta}]}{\operatorname{argmin}} J_{t_0}(\hat{\theta}).$$

=> Proposition 1

Proposition 1 – Solution to the ambiguity problem.

When $\psi=1$ and $\gamma\geqslant\omega$, where $\omega=\frac{\sigma^2(\mu-r)^2+2\rho\sigma(\mu-r)(\beta+\kappa)}{(\beta+\kappa)^2+\sigma^2(\mu-r)^2+2\rho\sigma(\mu-r)(\beta+\kappa)}<1$, the solution of the ambiguity problem is:

$$\theta^* = \theta$$
.

Comments on Proposition 1:

- □ Domain of the solution of the ambiguity problem depends on the relation between:
 - the level of relative risk aversion (γ)
 - characterization of the investment opportunity dynamics (ω).
- \square Under that domain, $\gamma \geqslant \omega$, precision is always good.

- ☐ Impact on Optimal Consumption and Portfolio rules?
 - \square None, as (8) and (9) do not depend on θ
- □ Is θ ambiguity aversion irrelevant?
 - □ No, if ambiguity averse investor observes the instantaneous precision but...can not adjust instantaneously his portfolio (e.g. transaction costs, human limitations):
 - □ expectation of future precision, and not instantaneous precision, drives investor's portfolio decision.
 - \square mean allocation to the risky asset differs from (10).
 - => Proposition 2

Proposition 2 - Portfolio choice under "expectation-driven" scenario

When $\psi = 1$, $\gamma \geqslant \omega$, and the θ -ambiguity averse investor considers the expected precision of the risky asset return instead of the instantaneous precision, the demand for the risky asset is:

$$\pi_{\underline{\theta}} = \frac{1}{\gamma} (\mu - r) \underline{\theta} + \frac{\sigma \rho}{\gamma} A \underline{\theta}, \qquad (11)$$

which can be decomposed into three components:

$$myopic demand = \frac{1}{\gamma} (\mu - r) \theta \tag{12}$$

$$intertemporal \ hedging \ demand = \frac{\sigma \rho}{\gamma} A\theta \tag{13}$$

ambiguity demand =
$$\left[\frac{1}{\gamma}(\mu - r) + \frac{\sigma\rho}{\gamma}A\right](\underline{\theta} - \theta)$$
. (14)

□ **Comment on Proposition 2:** New - introduction of the ambiguity demand component (14).

Proposition 3 – θ - ambiguity aversion impact on the demand for the risky asset (expectation-driven scenario):

- (i) θ -ambiguity aversion reduces the mean allocation to the risky asset;
- (ii) Ambiguity demand (14) is always negative;
- (iii) Intertemporal hedging demand is negative if $\gamma > 1$ and positive if $\omega \leqslant \gamma < 1$.

5 Simulation: Guidelines.

- □ In Chacko and Viceira (2005) it is found that the intertemporal hedging demand is empirically small:
 - □ Calibration with long-run US data: monthly excess stock returns on the CRSP value-weighted portfolio over the T-Bill rate (January 1926 December 2000)
 - □ Conclusion: "risk dimension" of stochastic precision is not relevant for the portfolio decision.

□ **Our question:** What happens, under the expectation-driven scenario, if ambiguity on stochastic precision is considered?

5 Simulation: Guidelines.

☐ The same calibration as in Chacko and Viceira (2005):

$$\mu - r = 0.0811$$
 $\kappa = 0.3374$
 $\theta = 27.9345$
 $\sigma = 0.6503$
 $\rho = 0.5241$
 $r = 0.015$
 $\beta = 0.06$. (15)

- \Box The long-run estimate of θ in (15) is assumed to be the reference value for the investor. θ-ambiguity averse investor builds the interval for θ values $[\underline{\theta}, \overline{\theta}]$ around it.
- \Box Taking expectations of the second order Taylor expansion of $v_t = \frac{1}{y_t}$ around θ :

$$E\left[v_{t}\right] \approx \frac{1}{\theta} + \frac{1}{2} \frac{\sigma^{2}}{\theta^{2} \kappa} = \frac{1}{\theta} + \frac{Var(y_{t})}{\theta^{3}}.$$
 (16)

5.1 Simulation: Exact Solution.

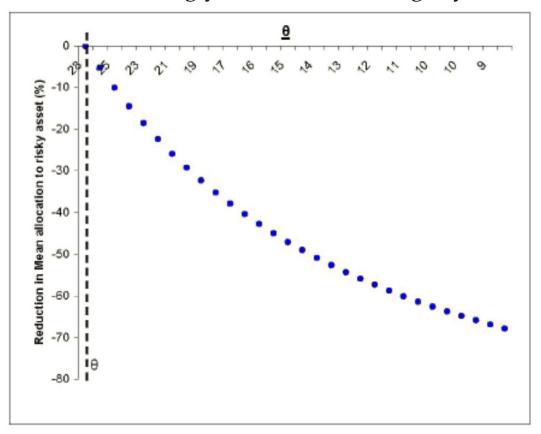
□ Portfolio Choice

Table 1	(with	W=1)
Iable	100161	Ψ-17

Table 1 (with ψ=1)					
	Expected Annual Standard Deviation of Risky Asset Return				
	19,1314%	20%	25%	30%	
implied 0	$\theta = 27.935$	$\underline{\theta}$ = 25.612	$\underline{\theta}$ = 16.604	<u>θ</u> = 11.706	
implied ambiguity level	0%	8%	41%	58%	
	A - Mean allocation to risky asset (%)				
R.R.A.					
0.75	305,66	280,24	181,68	128,09	
2.00	111,37	102,11	66,20	46,67	
4.00	55,24	50,64	32,83	23,15	
20.00	10,98	10,07	6,52	4,60	
	B - Ratio of hedging demand over myopic demand (%)				
R.R.A.					
0.75	1,19	1,19	1,19	1,19	
2.00	-1,68	-1,68	-1,68	-1,68	
4.00	-2,47	-2,47	-2,47	-2,47	
20.00	-3,09	-3,09	-3,09	-3,09	
	C - Ratio of Ambiguity demand over myopic demand (%)				
R.R.A.					
0.75	0,00	-8,41	-41,04	-58,79	
2.00	0,00	-8,18	-39,88	-57,12	
4.00	0,00	-8,11	-39,56	-56,66	
20.00	0,00	-8,06	-39,31	-56,30	

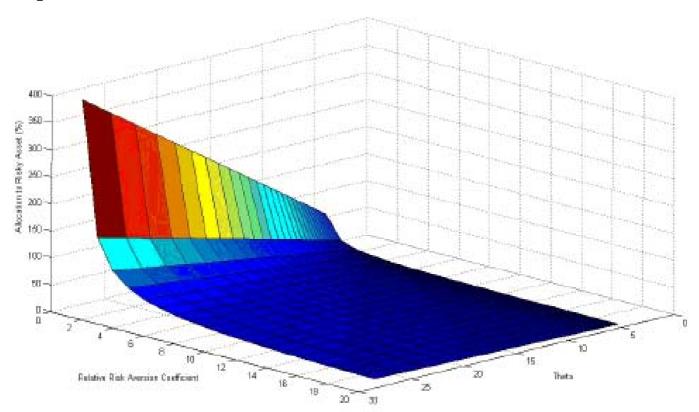
5.1 Simulation: Exact Solution.

- ☐ Comments on **Table 1**:
 - \square Portfolio choice strongly reacts to θ ambiguity.



5.1 Simulation: Exact Solution.

- □ Comments on **Table 1** (cont.):
 - $\ \square$ $\ \theta$ ambiguity has the same impact (direction) of risk aversion on the portfolio choice.



6 Conclusions.

- □ The solution of the ambiguity problem depends on the combination between investors risk preferences and the characterization of the investment opportunity set dynamics. In our setting, precision is always good.
- \Box θ -Ambiguity aversion is relevant if investor can not update continuously his portfolio. Expectation of future precision drives the risky asset demand.
- □ In this latter case, the risky asset demand is decomposed in three components: myopic and intertemporal hedging demand and ambiguity demand (novelty).
- □ It is found that ambiguity demand has a relevant empirical dimension, much higher than that of intertemporal hedging demand.
- □ Stochastic Precision of the risky return can be very relevant for the portfolio choice, essentially because of its ambiguity and not because of its risk.