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Motivation

eAlthough Black and Scholes assumed that the volatility is constant over
all strike prices and maturities, in real market, the implied volatility
curve(or surface) shows a curvature;

e\/olatility level shows a negative correlation with the underlying asset
price.
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The CEV(Constant Elasticity of Variance) Model

First introduced by Cox(1975), Cox and Ross(1976).

The model assumes that the dynamics of the underlying is given as

follows:
dX; = pXydt + oo X 2wy,

where 0 is responsible for the elasticity of variance which is assumed
to be constant.
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Option Price under CEV Model

Under this model, it is known that the option price is given by the
following formula(Schroder(1989)):
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Benefits from CEV

It captures the volatility skew phenomenon.
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Downsides of CEV

It tells us a false dynamics of implied volatility which may lead unstable
hedges.

The correct dynamics of volatility is such that the volatility curve shifts in
the same direction of the underlying asset movement(Hagan(2002)).

B-S Imp Vol Curve Shift
0256 under CEV model

Curve shifts in this direction

as asset price increa

60 70 80 9 10 120 130 40 150

100
Stiike Level

Figure: Wrong dynamics by CEV
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The Stochastic Elasticity of Variance Model
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The SEV/(Stochastic Elasticity of Variance) Model

The elasticity of variance parameter in CEV model : 0/2

Some empirical studies show that 6 > 2 (Bollerslev et al.(1988),
Campbell and Hentschel(1992), Ghysels et al.(2005)).

Other studies show that § < 2 (Campbell(1987), Breen et
al(1989), Glosten et al(1993), Brandt and Kang(2004)).

It also is shown to be time-varying (Harvey(2001), Ghysels et
al(1996)).
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The SEV/(Stochastic Elasticity of Variance) Model

0/2 = 1-~f(13)

Our model is governed by the SDEs

dX, = pXudt+oXx,; 7apr, (2.1)
dY; = a(m—Y;)dt + BdBY, (2.2)

with assumption that the Brownian motions Bf and B} are corre-
lated each other and f is a bounded function.

Notice that as v approaches to zero, the model becomes that of
Black and Scholes. Hence, we expect the Black-Scholes price to be
the leading-order term in our solution.
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Multiple Scales

Y; has an invariant distribution with variance g—a
B

Assume that v := T is an O(1)-term.

eFast mean-reverting of the process Y;. (i.e. a being large.)
o1 —~f(Y;)(elasticity) becomes stable to be 1. (i.e. v being small.)
o« being large while v being small.
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Multiple Scales
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0: We want to have the Black-Scholes price as a leading order term.
€: Fast mean-reverting OU process is analytcally more tractable.
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Change of Measure

Under risk-neutral measure, they become

dX, = rXdt+ox; Ve, (3.1)
1 1 1
dy, = [Z(m -Y,) - %V\/iA‘s(Xt,Yt)} dt + ﬁyﬁdwgf(:«;.z)

where the correlation of Brownian motions W;* and W/ are given by
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The Option Price

Under the risk-neutral measure, the option price is given by

P(t, X, ;) = E*[e "TDn(Xp)| Xy, Vi, (3.3)

where h(Xr) is the corresponding payoff function for either put or
call option.
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Feynman-Kac's Formula

From the Feynman-Kac's formula, one can obtain the pricing PDE

ﬁe,éps,é -0
€ 0 €,0
B o= 5 Ly = (3.4)

PY(T, x,y) = h(z),

where E}Y is the infinitesimal generator of the diffusion process
(X, Y;) given by

s _ 1 o sa-suyve @ O
EX’Y 2 92 —|—m:ax

1 l—f(y)\/g 8 B 8
+ — —_— — 2A —
Ve (Pl/\@aw B0y VY2 (z,y) By (3.5)

1/ ,0° 0
+2 (At mvg)



Asymptotic Analysis
.

Asymptotic Analysis

Singular perturbation for e and regular perturbation for 4.
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Regular Perturbation for ¢
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Use the expansion
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Asymptotic Analysis

£¢1$ =Lio+ \/gﬁll +6Li2+ -, (4.5)
2
EH)—-qupaxaaa (4.6)
2
L1 = -—erﬁaxflogxa 3y (4.7)
2 92
L2 = Vﬁpamm 9 (4.8)

21 dzoy’




Asymptotic Analysis
oce

Asymptotic Analysis

and
L= Lo+ VLo + 5L+, (4.9)
P ._2+1 22 @l )= Lps (410)
20 - ot o o 3 r\x a.’E = &~BS, \*-

2
Lo i = —0 332floga:a L (4.11)

2
Lo := o%2?(flog x)? (4.12)
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Asymptotic Analysis

We plug the expansion
PSS = PS + \/6Pf +6P§5 + - - - (4.13)

into the PDE (3.4) and obtain the following hierarchy:

1 1
80 (=Lo+ —=L10+ L20)P§ =0, (4.14)
€ Ve
5% (ALt Lo+ Lo0)Pf 4 (=Lay + Lo)PS =0, (4.15)
P (Gt 2L+ Lao) P+ (el + L) P =0, :
1 1 1
d: —L —L Log) Ps —L Lo1)Ps
(E 0+\ﬁ 10 + L20) 2+(\ﬁ 11+ L21) Py
1
—L L22)P§ = 0, 4.16
+(\ﬁ 12 + L22)F§ (4.16)

and impose the final conditions P§ (T, z,y) = h(z) and Pf(T,z,y) =0 ...
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Asymptotic Analysis

Expand Fj as follows

P§ = Poo+ VePy1+€Poa+eVePyz+ - -

with the final conditions Py (T, z,y) = h(z), Po1(T,z,y) = 0,
P()’Q(T,l‘,y) =0...

Then we have the following sequence of PDEs:

LoPoy + L10Py k-1 + L20Py k-2 = 0,
Po_2:=0, (4.17)
Py,-1:=0,

where £ =0,1,2,- - -.
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Asymptotic Analysis

For k£ = 0, the PDE,
LoPop =0,

is assumed to admit only solutions that do not grow so much as

0P, 2
8270 ~ 6%, Yy — 00,

then Py becomes a function of t and z only; Pyg = Pyo(t, x)

Similar assumption for & = 1 gives the same result on Fp;
P()’l = P(),l(t,LL‘).
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Asymptotic Analysis

We impose the centering condition on L3, i.e.
(L20P0,0) = LaoPoo = 0,

where

1 €9 _ (y=m)?
(9) ::W/ g(y)e” 22 dy

in order to admit the solutions only with reasonable growth.
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Asymptotic Analysis

We obtain the final value problem:

LooPoo == LpsPoo =0,
PO,O(T7 T, y) - h(.’L’) (418)
thus
LoPog =0 (4.19)

As we repeat this methodology, and properly apply the centering condition,
we obtain that P ¢ is the Black-Scholes price and Py ; = 0, and Py 2 = 0.
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Asymptotic Analysis

Expand P as follows

Pf=Pig++ePi1+€ePia+e/ePig+---

with the final conditions Py o(7T,z,y) = h(z), Pia(T,z,y) = 0,
P271(T,ac,y) =0...

v
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Asymptotic Analysis

As we apply the same logic, we obtain the following equation:

Poo
0x? ’
PE,O(Ta z, y) — 07 (420)

VI{O = 702(f>-

0
‘CBSPE,O = V1(3;0$2 logm
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The Group Parameter: foo

The leading order correction is entirely captured by the group pa-
rameter V15,0 := yo2(f) that we introduced earlier.

There is no need for the knowledge of the parameters 4, €, v, m, p,
and specific form of the function f.

st,o can be obtained by calibrating the model to the option prices
on the market.
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Integral Representation

The price P*° as a solution of the final value problem (4.20)
with h(z) = (z — K)*(i.e. for a call option) is asymptotically given by

P9~ z®(dy) — KO(dy)

T 1 =92 5
—V2 (K /o? / / Ll T = R
1,0( / ) 0 . \/m

(7 + log(K))é(dr)e (§ — &, 7 — s)dyds, (4.21)
where
_ 1,
T = log(z/K), Ti=50 (T —1t),
e*(z,1) 1= eF(FHDT—F04D p 2_7;7
o

and @ is the cumulative normal distribution and ¢ is the standard normal
density function and dy, ds are as appeared in Black-Scholes model.
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Integral Representation

One can solve PDE (4.20) for Pl’s,0 by transforming it into the heat
equation with a source term via the transformation

1
z:=log(zx/K), T:= 502(T —t)
for independent variables and the transformation
Py

1 =, 1
u(r, ) = e2(k—1)E+1 (k1)

for dependent variable.
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Integral Representation

2
Since 8(9];3’0 is merely the Gamma of an option, the resultant equa-

tion for w as follows:

ou 0%u s V2o (k4 1)3+1 (k+1)27
o = om ~ Vlog p @+ lg K)p(dn)er UG
u(0,) = 0.

This is the heat equation with zero initial condition and a nonzero
source term and its solution u and subsequently P{S’O is well-known.
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Some Simulation Results
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The Implied Volatility Surface
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Dynamics of Implied Volatility
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The Implied Volatility Curves with Various V,'s
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Conclusion and Works to be done

oSEV model overcomes the major drawback of the Black-Scholes
model and gives us a smile curve.

olt fits observed market behavior of volatility curve shift and over-
comes problems that CEV model has.

oA model with the CEV price in the leading order term.




Thank you for your attention!
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Figure: Fitted implied volatility curve with Spot: S&P500
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