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Motivation

•Although Black and Scholes assumed that the volatility is constant over
all strike prices and maturities, in real market, the implied volatility
curve(or surface) shows a curvature;
•Volatility level shows a negative correlation with the underlying asset
price.
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The CEV(Constant Elasticity of Variance) Model

CEV

First introduced by Cox(1975), Cox and Ross(1976).

The model assumes that the dynamics of the underlying is given as
follows:

dXt = µXtdt+ σ0X
θ/2
t dWt,

where θ is responsible for the elasticity of variance which is assumed
to be constant.
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Option Price under CEV Model

Under this model, it is known that the option price is given by the
following formula(Schroder(1989)):

CEV Options Price

CCEV (t,Xt) = Xt

∞∑
n=0

g(n+ 1, x)G(n+ 1 +
1

2− θ
, kK2−θ)

−Ke−r(T−t)
∞∑
n=0

g(n+ 1 +
1

2− θ
, x)G(n+ 1, kK2−θ),

where

g(m, v) = e−vvm−1

Γ(m) , G(m, v) =

∫ ∞
v

g(m,u)du,

k = 2r
σ2
0(2−θ)(er(2−θ)(T−t)−1)

, x = kX2−θ
t er(2−θ)(T−t)
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Benefits from CEV

It captures the volatility skew phenomenon.
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Downsides of CEV

It tells us a false dynamics of implied volatility which may lead unstable
hedges.
The correct dynamics of volatility is such that the volatility curve shifts in
the same direction of the underlying asset movement(Hagan(2002)).

Figure: Wrong dynamics by CEV
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The Stochastic Elasticity of Variance Model
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The SEV(Stochastic Elasticity of Variance) Model

Introduction of the Stochastic Elasticity

The elasticity of variance parameter in CEV model : θ/2

Some empirical studies show that θ > 2 (Bollerslev et al.(1988),
Campbell and Hentschel(1992), Ghysels et al.(2005)).

Other studies show that θ < 2 (Campbell(1987), Breen et
al(1989), Glosten et al(1993), Brandt and Kang(2004)).

It also is shown to be time-varying (Harvey(2001), Ghysels et
al(1996)).
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The SEV(Stochastic Elasticity of Variance) Model

CEV to SEV

θ/2 =⇒ 1− γf(Yt)

SEV Model dynamics:

Our model is governed by the SDEs

dXt = µXtdt+ σX
1−γf(Yt)
t dBx

t , (2.1)

dYt = α(m− Yt)dt+ βdBy
t , (2.2)

with assumption that the Brownian motions Bx
t and By

t are corre-
lated each other and f is a bounded function.

Notice that as γ approaches to zero, the model becomes that of
Black and Scholes. Hence, we expect the Black-Scholes price to be
the leading-order term in our solution.
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Multiple Scales

Assumption

Yt has an invariant distribution with variance β2

2α .

Assume that ν := β√
2α

is an O(1)-term.

Assumptions on Multiple Scales

•Fast mean-reverting of the process Yt. (i.e. α being large.)
•1−γf(Yt)(elasticity) becomes stable to be 1. (i.e. γ being small.)
•α being large while γ being small.
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Multiple Scales

Small parameters for the job

ε =
1

α
,

δ = γ2

Motivation

δ: We want to have the Black-Scholes price as a leading order term.
ε: Fast mean-reverting OU process is analytcally more tractable.
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Change of Measure

Our SDEs under the Risk-Neutral Measure

Under risk-neutral measure, they become

dXt = rXtdt+ σX
1−
√
δf(Yt)

t dW x
t , (3.1)

dYt =

[
1

ε
(m− Yt)−

1√
ε
ν
√

2Λδ(Xt, Yt)

]
dt+

1√
ε
ν
√

2 dW y
t(3.2)

where the correlation of Brownian motions W x
t and W y

t are given by

d〈W x,W y〉t = ρdt
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The Option Price

The Option Price

Under the risk-neutral measure, the option price is given by

P (t,Xt, Yt) = E∗[e−r(T−t)h(XT )|Xt, Yt], (3.3)

where h(XT ) is the corresponding payoff function for either put or
call option.
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Feynman-Kac’s Formula

From the Feynman-Kac’s formula, one can obtain the pricing PDE

Lε,δP ε,δ = 0

Lε,δ :=
∂

∂t
+ Lε,δX,Y − r·, (3.4)

P ε,δ(T, x, y) = h(x),

where Lε,δX,Y is the infinitesimal generator of the diffusion process
(Xt, Yt) given by

Lε,δX,Y =
1

2
σ2x2(1−f(y)

√
δ) ∂

2

∂x2
+ rx

∂

∂x

+
1√
ε

(
ρν
√

2σx1−f(y)
√
δ ∂2

∂x∂y
− ν
√

2Λδ(x, y)
∂

∂y

)
+

1

ε

(
ν2 ∂

2

∂y2
+ (m− y)

∂

∂y

)
.

(3.5)
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Asymptotic Analysis

Singular perturbation for ε and regular perturbation for δ.

Separating the Operator Lε,δ

Lε,δ =
1

ε
L0 +

1√
ε
Lδ1 + Lδ2, (4.1)

L0 := ν2 ∂
2

∂y2
+ (m− y)

∂

∂y
, (4.2)

Lδ1 := ρν
√

2σx1−f(y)
√
δ ∂2

∂x∂y
− ν
√

2Λδ(x, y)
∂

∂y
, (4.3)

Lδ2 :=
∂

∂t
+

1

2
σ2x2(1−f(y)

√
δ) ∂

2

∂x2
+ r(x

∂

∂x
− ·) (4.4)
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Regular Perturbation for δ

Handling Dependencies of Lδ1 and Lδ2 on δ

Lδ1 := ρν
√

2σx1−f(y)
√
δ ∂2

∂x∂y
− ν
√

2Λδ(x, y)
∂

∂y
,

Lδ2 :=
∂

∂t
+

1

2
σ2x2(1−f(y)

√
δ) ∂

2

∂x2
+ r(x

∂

∂x
− ·)

Use the expansion

x1−f
√
δ = x(1−

√
δf log x+ δ

(f log x)2

2!
− δ
√
δ

(f log x)3

3!
+ · · ·)
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Asymptotic Analysis

Further Expansion in Powers of
√
δ

Lδ1 = L10 +
√
δL11 + δL12 + · · ·, (4.5)

L10 := ν
√

2ρσx
∂2

∂x∂y
, (4.6)

L11 := −ν
√

2ρσxf log x
∂2

∂x∂y
, (4.7)

L12 := ν
√

2ρσx
(f log x)2

2!

∂2

∂x∂y
, (4.8)

·
·
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Asymptotic Analysis

Further Expansion in Powers of
√
δ -cont

and

Lδ2 = L20 +
√
δL21 + δL22 + · · ·, (4.9)

L20 :=
∂

∂t
+

1

2
σ2x2 ∂

2

∂x2
+ r(x

∂

∂x
− ·) = LBS , (4.10)

L21 := −σ2x2f log x
∂2

∂x2
, (4.11)

L22 := σ2x2(f log x)2 ∂
2

∂x2
, (4.12)

·
·
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Asymptotic Analysis

Asymptotic Analysis

We plug the expansion

P ε,δ = P ε0 +
√
δP ε1 + δP ε2 + · · · (4.13)

into the PDE (3.4) and obtain the following hierarchy:

δ0 : (
1

ε
L0 +

1
√
ε
L10 + L20)P ε0 = 0, (4.14)

δ
1
2 : (

1

ε
L0 +

1
√
ε
L10 + L20)P ε1 + (

1
√
ε
L11 + L21)P ε0 = 0, (4.15)

δ : (
1

ε
L0 +

1
√
ε
L10 + L20)P ε2 + (

1
√
ε
L11 + L21)P ε1

+(
1
√
ε
L12 + L22)P ε0 = 0, (4.16)

·
·

and impose the final conditions P ε0 (T, x, y) = h(x) and P ε1 (T, x, y) = 0 . . .
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Asymptotic Analysis

Analysis of δ0 Power w.r.t. the Parameter ε

Expand P ε0 as follows

P ε0 = P0,0 +
√
εP0,1 + εP0,2 + ε

√
εP0,3 + · · ·

with the final conditions P0,0(T, x, y) = h(x), P0,1(T, x, y) = 0,
P0,2(T, x, y) = 0 . . .

Then we have the following sequence of PDEs:

L0P0,k + L10P0,k−1 + L20P0,k−2 = 0,

P0,−2 := 0, (4.17)

P0,−1 := 0,

where k = 0, 1, 2, · · ·.
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Asymptotic Analysis

A Few More Assumptions

For k = 0, the PDE,
L0P0,0 = 0,

is assumed to admit only solutions that do not grow so much as

∂P0,0

∂y
∼ e

y2

2 , y →∞,

then P0,0 becomes a function of t and x only; P0,0 = P0,0(t, x)

Similar assumption for k = 1 gives the same result on P0,1;
P0,1 = P0,1(t, x).
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Asymptotic Analysis

A Few More Assumptions -cont

We impose the centering condition on L2,0, i.e.

〈L20P0,0〉 = L20P0,0 = 0,

where

〈g〉 :=
1√

2πν2

∫ ∞
∞

g(y)e−
(y−m)2

2ν2 dy

in order to admit the solutions only with reasonable growth.
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Asymptotic Analysis

A Few More Assumptions -cont

We obtain the final value problem:

L20P0,0 := LBSP0,0 = 0,

P0,0(T, x, y) = h(x) (4.18)

thus
L0P2,0 = 0 (4.19)

As we repeat this methodology, and properly apply the centering condition,
we obtain that P0,0 is the Black-Scholes price and P0,1 = 0, and P0,2 = 0.
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Asymptotic Analysis

Analysis of δ
1
2 Power w.r.t. the Parameter ε

Expand P ε1 as follows

P ε1 = P1,0 +
√
εP1,1 + εP1,2 + ε

√
εP1,3 + · · ·

with the final conditions P1,0(T, x, y) = h(x), P1,1(T, x, y) = 0,
P2,1(T, x, y) = 0 . . .
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Asymptotic Analysis

As we apply the same logic, we obtain the following equation:

LBSP δ1,0 = V δ
1,0x

2 log x
∂2P0,0

∂x2
,

P δ1,0(T, x, y) = 0, (4.20)

V δ
1,0 := γσ2〈f〉.
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The Group Parameter: V δ
1,0

The leading order correction is entirely captured by the group pa-
rameter V δ

1,0 := γσ2〈f〉 that we introduced earlier.
There is no need for the knowledge of the parameters δ, ε, ν, m, ρ,
and specific form of the function f .
V δ

1,0 can be obtained by calibrating the model to the option prices
on the market.
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Integral Representation

The price P ε,δ as a solution of the final value problem (4.20)
with h(x) = (x−K)+(i.e. for a call option) is asymptotically given by

P ε,δ ∼ xΦ(d1)−KΦ(d2)

−V δ1,0(K/σ2)

∫ τ

0

∫ ∞
−∞

1√
2πs(τ − s)

e−
(ỹ−x̃)2
4(τ−s) +x̃

∗(ỹ + log(K))φ(d1)e∗(ỹ − x̃, τ − s)dỹds, (4.21)

where

x̃ := log(x/K), τ :=
1

2
σ2(T − t),

e∗(x, t) := e
1
2 (k+1)x− 1

4 (k+1)2t, k :=
2r

σ2
,

and Φ is the cumulative normal distribution and φ is the standard normal
density function and d1, d2 are as appeared in Black-Scholes model.
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Integral Representation

Proof

One can solve PDE (4.20) for P δ1,0 by transforming it into the heat
equation with a source term via the transformation

x̃ := log(x/K), τ :=
1

2
σ2(T − t)

for independent variables and the transformation

u(τ, x̃) =
P δ1,0
K

e
1
2

(k−1)x̃+ 1
4

(k+1)2τ

for dependent variable.
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Integral Representation

Proof-cont

Since
∂2P0,0

∂x2
is merely the Gamma of an option, the resultant equa-

tion for u as follows:

∂u

∂τ
=

∂2u

∂x̃2
− V δ

1,0

√
2

σ2
√
τ

(x̃+ logK)φ(d1)e
1
2

(k+1)x̃+ 1
4

(k+1)2τ

u(0, x̃) = 0.

This is the heat equation with zero initial condition and a nonzero
source term and its solution u and subsequently P δ1,0 is well-known.
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Some Simulation Results
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The Implied Volatility Surface
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Dynamics of Implied Volatility
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The Implied Volatility Curves with Various V δ
1,0’s
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Conclusion
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Conclusion and Works to be done

•SEV model overcomes the major drawback of the Black-Scholes
model and gives us a smile curve.
•It fits observed market behavior of volatility curve shift and over-
comes problems that CEV model has.
•A model with the CEV price in the leading order term.
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Thank you for your attention!
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Figure: Fitted implied volatility curve with Spot: S&P500
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