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Orbital integrals

Let F be a local field (R, C or a finite extension of Q).
Let G be a connected reductive group over F.

Amongst the most important invariant distributions on G(F)
are the orbital integrals associated to regular semisimple
elements v € G(F) :

0% (f) = / f(g 1g) dg
Gy (F\G(F)

where
f e CX(G(F)) is a test function
G, is the centralizer of

Off depends on the choice of an invariant measure dg on the
orbit G,(F)\G(F). We may assume that O,f depends only
the conjugacy class of 7.



Stable orbital integrals

e We can only expect a transfer of stable conjugacy classes
between inner forms of the group G.

e Here stable means conjugacy classes of G(F) where F is an
algebraic closure of F.

e The stable orbital integral attached to a regular semisimple
stable conjugacy class o is

SOS(f)=>_05(f)
v

where the sum is over the finite set of conjugacy classes of ~
inside o.



The Arthur-Selberg trace formula

e In this slide the group G is over a number field F.

e Langlands functoriality predicts deep reciprocity laws between
the automorphic spectra of G and its inner forms.

e The Arthur-Selberg trace formula is roughly the equality

trace(f|automorph. spectrum) = Z ay H O5(f)
0% v

where

e f is a test function.

e The sum is over regular semi-simple conjugacy classes v in
G(F).

e [I, O%(f) is a product over completions F, of F of local
orbital integrals of G(F,).

e a, is a global coefficient (a volume).

e A basic strategy to prove Langlands functoriality for inner
forms is to compare the geometric sides of the trace formulas.



The endoscopy

e Main Problem : The trace formula is not stable: it is not a
sum of products of local stable orbital integrals.

e The difference between the trace formula and its stable
counterpart can be expressed as a sum of products of local

distributions
> Au(e,)05(1)
YEG(F)/~
indexed by endoscopic groups H and regular semisimple stable
conjugacy classes o of H(F). The function Ay(o,7) is the
Langlands-Shelstad transfer factor: it vanishes unless the
stable conjugacy class of v matches o.

e It is in fact possible to interpret the unstable part of the trace
formula as a stable trace formula for endoscopic groups. But
for this we need the following two statements in local
harmonic analysis.



Two statements in local Harmonic Analysis

Theorem (Langlands-Shelstad transfer)

Let H be an endoscopic group of G. For any f € C°(G(F)), there
exists fH € C2(H(F)) s.t. for any stable conjugacy class o of
H(F)
> AulemO5(F) =SOF(M)
VEG(F)/~

Theorem (Langlands-Shelstad fundamental lemma)

F is p-adic and G and H are unramified.

If f is the characteristic function of a hyperspecial maximal
compact subgroup of G(F), one may take for fH the characteristic
function of a hyperspecial maximal compact subgroup of H(F).



3 reductions

. Reduction to the units

e Shelstad proved the transfer for archimedean fields.

e The Fundamental Lemma (FL) = the p-adic transfer for the
spherical Hecke algebra (Hales).

o (FL) = the p-adic transfer (Waldspurger).

. From the group to the Lie algebra

o (FL) <= a variant of (FL) for Lie algebras (Hales,
Waldspurger)

. Reduction to the case of local fields of equal characteristics
For Lie algebras, we have
e (FL) for p-adic field with residual field [Fg is equivalent to (FL)
for local fields Fy((¢)). (Waldspurger / Cluckers-Hales-Loeser)



The fundamental lemma for the Lie algebra of SL(2)

o Let F =Fy((€)), O =TFql[e]], Fyq is finite of char. > 2.

o Let G = SL(2) and g = Lie(G).

e Leta€Fp\Fqgst a?€Fqand E = Fla] D O.

e The group H(F) = {x € E | Normg,r(x) = 1} is an
unramified endoscopic group of G.

e Any a € F* determines a regular characteristic polynomial

X2 — (aa)? € F[X]

and two distinct G(F)-conjugacy classes in g(F) namely those
of
(0 (ea)? , (0 e} aa)?
7“’_<1 0 and 75 = | 0
e The (FL) is the equality

q val(a)oi(lg(oF)) —q Val(a)O%(lg(O,:)) = ].OE(aa)



Cohomological interpretation

In the case of the Fundamental Lemma for Lie algebras over
Fq((t)), we have:

e The orbital integrals 'compute’ the number of rational points
of varieties over [F,, some quotients of Affine Springer fibers.

e Thanks to the Grothendieck function-sheaf dictionary this
gives a cohomological approach to the (FL).

e Ngb indeed proves the (FL) by a cohomological study of the
elliptic part of the Hitchin fibration.



The example of GL(n)
Let F =Fq4((e)) D O =TFq[[e]].
Let G = GL(n) and g = Lie(G) with n > char(Fy).
o Let v € g(F) be regular semisimple.
e Let A, C G,(F) be the image of the discrete group of
F-rational cocharacters of G, by € — e,
e Let dg be the quotient of Haar measures on G(F) and G,(F)
normalized by

vol(G(OF)) =1 and vol(A,\Gy(F)) =1
Proposition We have
/ Lyo)(g 1) d = A\ X,
Gy(F)\G(F)

where X is the set of lattices L C F" s.t. v£L CL.

The group A, acts on X, through the action of G(F) on the set of
lattices.



Affine Springer fiber ...

The set of lattices X is an increasing union of projective varieties
called the Affine Grassmaniann.
The Affine Springer fiber is the closed (ind-)subvariety X, C X.

Theorem (Kazhdan-Lusztig)
e X, is a variety locally of finite type and of finite dimension.

e The quotient A\\X., is a projective variety.

Example G = GL(2) and v = ( 8 —05 )

Then X, is Zx an infinite chain of P!

/\/\/\



. and its quotient

When one takes the quotient by A, ~ 72, one gets



Back to the (FL) for SL(2)
Let G = SL(2) and a € Fe \ Fy

0 a?? , 0 a’e
’YE_(]- 0 >and7&‘_(€ 0 Gg(F)

O,. =g+ 1and O, =1 are the number of fixed points of two
twisted Frobenius of a connected component of X,.

/\/\/\
T~ T~

(FL) is given by the equality g} (¢ +1) —g 1 x1=1



Work of Goresky-Kottwitz-MacPherson

e For v “equivalued” and unramified, they computed the
cohomology of X,.

o 0, =|(M\X,)(Fq)| = trace(Frobg, H* (A \X~, Qy)).
e For such ~, they proved the Fundamental Lemma.
Remarks

e They need that «y is “equivalued” to prove that the
cohomology of X, is pure.

e It is conjectured that this cohomology is always pure.

e They need that «y is unramified since they first compute the
equivariant cohomology of X, for the action of a “big” torus.



Ngb's global approach

e Let C be a connected, smooth, projective curve over k = E
e Let D = 2D’ be an even and effective divisor on C of degree
> 2g with g the genus of C. Let n > char(k).
A Higgs bundle is a pair (£,0) s.t.
e & is a vector bundle on C of rank n and degree 0
e 0:£—=E(D)=E®0, Oc(D) is a twisted endomorphism.
For such a pair, we have
o trace(d) : Oc 3 £nd(€) & Oc(D) € HO(C,0¢(D))
o a;(0) := trace(A'0) € HY(C,O¢(iD))
The characteristic polynomial of (€, 0) is then defined by

Xo = X" —a1(0)X" 1+ ...+ (—1)"an(0) € @ H(C,0¢(iD))



Hitchin fibration

e Let M be the algebraic k-stack of Higgs bundles (&, 0)

e Let A be the affine space of characteristic polynomials
X" —a X"l 4 (=1)"a,
with a; € H(C, O¢(iD)). By Riemann-Roch theorem

dimg(A) = n(n;l) deg(D) + n(1 — g)

e The Hitchin fibration is the morphism
f-M—=A

defined by
f(ga 9) = X0



Adelic description of Hitchin fibers

Let F = k(C) the function field of C.
Let G = GL(n) and g = Lie(GL(n)).
A ring of adeles of F and O =[] ¢ ¢ O.CA

Let wp = (wd"P) g c € A

Let x € A(k) and H, be the set of

(g,7) € G(A)/G(O) x g(F) s.t.

1. deg(det(g)) =0
2. Xy =X .
3. g7 'vg € wp 0(0)

The group G(F) acts on H, by 6 - (g,7) = (6g, 575 71)

Lemma
The Hitchin fibre f~1(x)(k) is the quotient groupoid [G(F)\H,].



Counting points of elliptic Hitchin fibers
Let A" ¢ A’ C A be the open subsets defined by
o A®l = [y € A%l | x is irreducible in F[X]}
o A5 = [y € A% | y is square-free in F[X]}
Lemma (Ngo)

Let x € A™ and v € g(F) s.t. x4 = x. Let (vc)e = wpy € g(A).
We have

FLO0(R) = [G(F\HA = [T(F\ T] % (k)]

ce|C|

where T is the centralizer of vy in G and X.,_ is an affine Springer
fiber. Moreover if k =TF,, we have

|FH () (Fq)| = vol(T HO%

where vol( T(F)\T(A)?) < oo iff x € A¥(Fy).



A slight variant of the Hitchin fibration

Let 0o € C a closed point, oo ¢ supp(D).

Let A® C A"™° be the open subset of x € A such that y has
only simple roots.

Let A be the étale Galois cover of A* of group &,, given by

n

A={(x.7) € A% x K"[xoo = [ [(X =)}

i=1

Let (£,0,x0,7) € M xpa A. Then O is a regular semi-simple
endomorphism of £,,. Let

M—)MXAA

be the G,-torsor we obtain by choosing an eigenvector e; in the
line Ker(foo — 1 1dg.).

Remark The additional datum e; “kills” the automorphisms
coming from the center of G.



By base change, we have a Hitchin fibration still denoted f

M—)MXA.A—>.A

So M classifies (£,0, 1, €e;) s.t.
e (£,0) is Higgs bundle s.t. 0 is regular semi-simple
e 7 =(71,...,7p) is the ordered collection of eigenvalues of 0
e e € E is an eigenvector of (0, 71).

By deformation theory, we have

Theorem (Biswas-Ramanan)

The algebraic stack M is smooth over k.



The spectral curve of
Hitchin-Beauville-Narasimhan-Ramanan

Let £p = Spec( @72y Oc(—iD)X") — C the whole space of the
divisor D.

Let a= (x,7) € A.

The spectral curve Y; is the closed curve in £ p defined by the
equation

X(X)=X"—a X" 14 .. 4 (-1)"a, =0.

The canonical projection w5 : Y, — C is a finite cover of degree n,
which is étale over co. We have a natural identification

75 (00) = {001, ..., 000} Z{m1,...,Ta}.



Properties of the spectral curve Y,

Recall a=(x,7) € A
e Y, is reduced (since x € A™)
e Y, is connected

e Y, is not always irreducible: Y is irreducible <= a € A®!
(there are as many irreducible components of Y as irreducible
factors of x € F[X])

e |ts arithmetic genus defined by
qy, = dim(H' (Y2, 0y,)) = dim(H(C, 75,.0y,))

does not depend on a. In fact,
TaxOy, =0c ®Oc(-D)® ... O((—n+1)D)

and qy, = @ deg(D) + n(g — 1) + 1.



Hitchin-Beauville-Narasimhan-Ramanan correspondence

Theorem (H-BNR)

Let a € A. The Hitchin fiber M, = f~1(a) is isomorphic to the
stack of torsion-free coherent Oy,-modules F of degree 0 and rank
1 at generic points of Y,, equipped with a trivialization of their
stalk at 0oy.

Construction: the multiplication by X gives a section
Oya — W:(Oc(D).
For such a F, we get a morphism F — F ®o,, 7;0c(D) and

0 TauF = Tax(F @0y, 1,0c(D)) = max(F)(D)

We associate to F the Higgs bundle (7, .F ®0, Oc(%52D),0).



Let A7 the open set of a such that Y, is smooth. One has
Asm 7& (Z)

Corollary
For a € A°™, the Hitchin fiber M is the Jacobian of Y. In
particular, it is an abelian variety.

Let a € A.

Let Pic®(Y;) the smooth commutative group scheme of line
bundles on Y, of degree 0, equipped with a trivialization of their
stalk at cog.

By H-BNR correspondence, Pic?(Y,) acts on M.

Let M5® C M, be the open sub-stack (£,6,7,e1) € M, such
that 6. is regular for any c € C.

Lemma

& is a PicY(Y,)-torsor.



Dimension of Hitchin fibers M,

As a consequence of the work of Altmann-larrobino-Kleiman on
compactified Jacobian, Ngbé gets the following theorem

Theorem
o M5® is dense in M,.
o dim(M,;) = dim(M5%) = dim(Pic®(Y,)) = qy, (=arithmétic
genus of Y,) does not depend on a.

e Irr(M,) is a torsor under the abelian group
mo(Pic(Ys)) ~ {(n;) € Z'(Y2) | S n; = 0}
Corollary

e dim(M) = n?deg(D) + 1.
e M, is irreducible if and only if a € A%,



Some examples
Let C = PL O Spec(k[y]) 3 oo, D =2[0], n = 2.
Let p(y) € k[y] of degree 4 and 7 € k* s.t. 72 = p(0) # 0.
Let a = (X2 - p(y)a (T> _T)) € A
Y, is of genus qy, = 1 = dim(M,).
Examples of spectral curves Y,

In the first 3 pictures, Y, is irreducible and M, ~ Y.



Support theorem on the elliptic locus

As a consequence of results of Altmann-Kleiman, the elliptic
Hitchin morphism

f-ell :Mell =M X 4 Aell _>Aell

is proper and M®!! is a smooth scheme over k.

By Deligne theorem, the complex of ¢-adic sheaves Rf"'Qy is pure.
By Beilinson-Bernstein-Deligne-Gabber decomposition theorem,
the direct sum of its perverse cohomology sheaves is semi-simple:

PHY(RE'Qe) = €D "M (REE' Q)

Theorem (Ngd's support theorem)
The support of any irreducible constituent of PH*(Rfg",Qy) is A
Remarks

e The theorem is in fact only proved on a big subset of A.

e Orbital integrals are “limits” of the simplest orbital integrals.



For other reductive groups G 7

The support theorem is not true as stated.

Let's consider the example G = SL(2). The Hitchin space
M classifies (€,0, 7, 1) as before with

e & is a vector bundle of degree 2 and trivial determinant
det(é’) = Oc¢.
o 0:& — E(D) is a traceless twisted endomorphism.

The Hitchin base Ag classifies pairs a = (X? — ap,7) where
ap € H°(C,0(2D)) s.t. ax(o0) = 72 #0.

We have a Hitchin morphism f : Mg — A¢ defined by
f(€,0,7,e1) = (det(9), 7).

A Hitchin fiber M, is isomorphic to the stack of rank 1,
torsionfree Oy,-modules F which satisfy det(m, . F(52)) = Oc
The group P, acts on M.

P, := Ker(Norm : Pic%(Y;) — Pic®(C)).



The example of SL(2)

Let a € A" and Pa : X3 — C obtained from the normalization
Xo— Yyand w0 Y, — C.
Either the group P, is connected or mo(P,) = Z/27Z.

P, is not connected iff p, : X; — C is étale.
Let £ € Pic®(C)[2] attached to X,. Moreover there exists

b e H°(C,L(D))

s.t. b®? = ay.

The groups P, come in a family P/ A" with a natural
morphism
7.)27, — mo(P/A®.

The group P acts on PH'(ng['*@g) through mo(P /A"

( eII QZ) ( eII QZ)—i— @ PH® (R eII QZ)



Support theorem for SL(2)

e For any non-trivial £ € Pic®(C)][2],
Az = {be HYC,L(D)) | b(c0) # 0}.

e The map b~ (b¥2, b(c0)) defines a closed immersion
Ap — A‘gl.
e The A, are disjoint.

Theorem (Ng6's support theorem)

1. The support of any irreducible constituent of ”7—['(/3\’f(§”*@g)4r
is A 7
G- _
2. The supports of irreducible constituents of pH.(ngll*@g)_ are
the A,.



Cohomological fundamental lemma for SL(2)

e Any non-trivial £ € Pic®(C)[2] defines an étale cover X; — C
and an endoscopic group scheme on C

Hg = (Xg X Gm)/{ﬂ:l}

e For H= H,, we have a Hitchin morphism f: My — Ay
with Ay = Ar.

Theorem (Ngd)
Let vy : Ay — Ag. We have up to a shift and a twist

LT’/ pH.(ngl,l*@f)* = p}l.(RfH,*@f)

By the Grothendieck-Lefschetz trace formula, this gives a global
version of the fundamental lemma for G = SL(2).



GL(n) case : outside the elliptic locus

e The properness of f¢! is crucial in Ngd's proof.

e Outside A% the Hitchin fibration is neither of finite type nor
separeted.

e To get Arthur's weighted fundamental lemma, we have to
look outside A°!".

e Foreach £ =(&,...,&,) € R”, let's say that
m=(&,0,7,e1) € M is &-stable iff for any #-invariant
sub-bundle

0CFCE

one has

deg(F) —i—ZE; <0

where the sum is over / s.t. 7; is an eigenvalue of 0.

Remarks there is only a finite number of #-invariant F and none if
(€,0) is elliptic.



Properness of M¢

Let M¢ be the ¢-stable sub-stack of M for a generic &.

Theorem (Laumon-C.)

1. M¢ is an smooth open sub-stack of M which contains M.
2. The &-stable Hitchin fibration is proper.

FS o ME— A

3. Forac A(Fy), |M§,(Fq)| does not depend on & and is a
global Arthur's weighted orbital integral.

4. Support theorem. The support of any irreducible constituent
of PH*(RfE Qy) is A.

Here & generic means ;& ¢ Z forany 0 # 1 C {1,...,n}



A spectral curve with 2 components

Let's go back to the example: C =P} D Spec(k[y]) 3 oo,
D =2[0], n=2.

Let a= (X% —(y*>—1)%,(1,-1)) € A.

In this case, Y, has 2 irreducible components and looks like



An non-elliptic fiber

M, is the quotient of the product of 2 Affine Springer fibers by
the diagonal action of G, and the antidiagonal action of Z




An non-elliptic fiber

The action of G, stabilizes each square with 1-dim. orbits, fixed
points and in black the quotient by G,




An non-elliptic fiber

Up to some BG,,, M, looks like an infinite chain of non-separeted
P! with double 0 and double cc.




Stable part of M,




Semi-stable part of M,




&-stable part of M, & generic




We get ...



