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Orbital integrals

• Let F be a local field (R,C or a finite extension of Qp).
Let G be a connected reductive group over F .

• Amongst the most important invariant distributions on G (F )
are the orbital integrals associated to regular semisimple
elements γ ∈ G (F ) :

OG
γ (f ) =

∫
Gγ(F )\G(F )

f (g−1γg) dġ

where

• f ∈ C∞c (G (F )) is a test function

• Gγ is the centralizer of γ

• OG
γ depends on the choice of an invariant measure dġ on the

orbit Gγ(F )\G (F ). We may assume that OG
γ depends only

the conjugacy class of γ.



Stable orbital integrals

• We can only expect a transfer of stable conjugacy classes
between inner forms of the group G .

• Here stable means conjugacy classes of G (F ) where F is an
algebraic closure of F .

• The stable orbital integral attached to a regular semisimple
stable conjugacy class σ is

SOG
σ (f ) =

∑
γ

OG
γ (f )

where the sum is over the finite set of conjugacy classes of γ
inside σ.



The Arthur-Selberg trace formula

• In this slide the group G is over a number field F .

• Langlands functoriality predicts deep reciprocity laws between
the automorphic spectra of G and its inner forms.

• The Arthur-Selberg trace formula is roughly the equality

trace(f |automorph. spectrum) =
∑
γ

aγ
∏
v

Ov
γ(f )

where
• f is a test function.
• The sum is over regular semi-simple conjugacy classes γ in

G (F ).
•
∏

v Ov
γ(f ) is a product over completions Fv of F of local

orbital integrals of G (Fv ).
• aγ is a global coefficient (a volume).

• A basic strategy to prove Langlands functoriality for inner
forms is to compare the geometric sides of the trace formulas.



The endoscopy

• Main Problem : The trace formula is not stable: it is not a
sum of products of local stable orbital integrals.

• The difference between the trace formula and its stable
counterpart can be expressed as a sum of products of local
distributions ∑

γ∈G(F )/∼

∆H(σ, γ)OG
γ (f )

indexed by endoscopic groups H and regular semisimple stable
conjugacy classes σ of H(F ). The function ∆H(σ, γ) is the
Langlands-Shelstad transfer factor: it vanishes unless the
stable conjugacy class of γ matches σ.

• It is in fact possible to interpret the unstable part of the trace
formula as a stable trace formula for endoscopic groups. But
for this we need the following two statements in local
harmonic analysis.



Two statements in local Harmonic Analysis

Theorem (Langlands-Shelstad transfer)

Let H be an endoscopic group of G. For any f ∈ C∞c (G (F )), there
exists f H ∈ C∞c (H(F )) s.t. for any stable conjugacy class σ of
H(F ) ∑

γ∈G(F )/∼

∆H(σ, γ)OG
γ (f ) = SOH

σ (f H)

Theorem (Langlands-Shelstad fundamental lemma)

F is p-adic and G and H are unramified.
If f is the characteristic function of a hyperspecial maximal
compact subgroup of G (F ), one may take for f H the characteristic
function of a hyperspecial maximal compact subgroup of H(F ).



3 reductions

1. Reduction to the units
• Shelstad proved the transfer for archimedean fields.
• The Fundamental Lemma (FL) =⇒ the p-adic transfer for the

spherical Hecke algebra (Hales).
• (FL) =⇒ the p-adic transfer (Waldspurger).

2. From the group to the Lie algebra

• (FL) ⇐⇒ a variant of (FL) for Lie algebras (Hales,
Waldspurger)

3. Reduction to the case of local fields of equal characteristics
For Lie algebras, we have

• (FL) for p-adic field with residual field Fq is equivalent to (FL)
for local fields Fq((ε)). (Waldspurger / Cluckers-Hales-Loeser)



The fundamental lemma for the Lie algebra of SL(2)
• Let F = Fq((ε)), OF = Fq[[ε]], Fq is finite of char . > 2.
• Let G = SL(2) and g = Lie(G ).
• Let α ∈ Fq2 \ Fq s.t. α2 ∈ Fq and E = F [α] ⊃ OE .
• The group H(F ) = {x ∈ E | NormE/F (x) = 1} is an

unramified endoscopic group of G .
• Any a ∈ F× determines a regular characteristic polynomial

X 2 − (αa)2 ∈ F [X ]

and two distinct G (F )-conjugacy classes in g(F ) namely those
of

γa =

(
0 (αa)2

1 0

)
and γ′a =

(
0 ε−1(αa)2

ε 0

)
• The (FL) is the equality

q− val(a)OG
γa(1g(OF ))− q− val(a)OG

γ′a
(1g(OF )) = 1OE

(aα)



Cohomological interpretation

In the case of the Fundamental Lemma for Lie algebras over
Fq((t)), we have:

• The orbital integrals ’compute’ the number of rational points
of varieties over Fq, some quotients of Affine Springer fibers.

• Thanks to the Grothendieck function-sheaf dictionary this
gives a cohomological approach to the (FL).

• Ngô indeed proves the (FL) by a cohomological study of the
elliptic part of the Hitchin fibration.



The example of GL(n)
Let F = Fq((ε)) ⊃ O = Fq[[ε]].
Let G = GL(n) and g = Lie(G ) with n > char(Fq).

• Let γ ∈ g(F ) be regular semisimple.

• Let Λγ ⊂ Gγ(F ) be the image of the discrete group of
F -rational cocharacters of Gγ by ε 7→ ελ.

• Let dġ be the quotient of Haar measures on G (F ) and Gγ(F )
normalized by

vol(G (OF )) = 1 and vol(Λγ\Gγ(F )) = 1

Proposition We have∫
Gγ(F )\G(F )

1g(O)(g−1γg) dġ = |Λγ\Xγ |

where Xγ is the set of lattices L ⊂ F n s.t. γL ⊂L.

The group Λγ acts on Xγ through the action of G (F ) on the set of
lattices.



Affine Springer fiber ...

The set of lattices X is an increasing union of projective varieties
called the Affine Grassmaniann.
The Affine Springer fiber is the closed (ind-)subvariety Xγ ⊂ X.

Theorem (Kazhdan-Lusztig)

• Xγ is a variety locally of finite type and of finite dimension.

• The quotient Λγ\Xγ is a projective variety.

Example G = GL(2) and γ =

(
ε 0
0 −ε

)
.

Then Xγ is Z× an infinite chain of P1



... and its quotient

When one takes the quotient by Λγ ' Z2, one gets



Back to the (FL) for SL(2)

Let G = SL(2) and α ∈ Fq2 \ Fq

γε =

(
0 α2ε2

1 0

)
and γ′ε =

(
0 α2ε
ε 0

)
∈ g(F )

Oγε = q + 1 and Oγ′ε = 1 are the number of fixed points of two
twisted Frobenius of a connected component of Xγ .

(FL) is given by the equality q−1(q + 1)− q−1 × 1 = 1



Work of Goresky-Kottwitz-MacPherson

• For γ “equivalued” and unramified, they computed the
cohomology of Xγ .

• Oγ = |(Λγ\Xγ)(Fq)| = trace(Frobq,H
•(Λγ\Xγ , Q̄`)).

• For such γ, they proved the Fundamental Lemma.

Remarks

• They need that γ is “equivalued” to prove that the
cohomology of Xγ is pure.

• It is conjectured that this cohomology is always pure.

• They need that γ is unramified since they first compute the
equivariant cohomology of Xγ for the action of a “big” torus.



Ngô’s global approach

• Let C be a connected, smooth, projective curve over k = Fq

• Let D = 2D ′ be an even and effective divisor on C of degree
> 2g with g the genus of C . Let n > char(k).

A Higgs bundle is a pair (E , θ) s.t.

• E is a vector bundle on C of rank n and degree 0

• θ : E → E(D) = E ⊗OC
OC (D) is a twisted endomorphism.

For such a pair, we have

• trace(θ) : OC
id→ End(E)

θ→ OC (D) ∈ H0(C ,OC (D))

• ai (θ) := trace(∧iθ) ∈ H0(C ,OC (iD))

The characteristic polynomial of (E , θ) is then defined by

χθ = X n − a1(θ)X n−1 + . . .+ (−1)nan(θ) ∈
⊕
i

H0(C ,OC (iD))



Hitchin fibration

• Let M be the algebraic k-stack of Higgs bundles (E , θ)

• Let A be the affine space of characteristic polynomials

X n − a1X n−1 + . . .+ (−1)nan

with ai ∈ H0(C ,OC (iD)). By Riemann-Roch theorem

dimk(A) =
n(n + 1)

2
deg(D) + n(1− g)

• The Hitchin fibration is the morphism

f : M→ A

defined by
f (E , θ) = χθ



Adelic description of Hitchin fibers

• Let F = k(C ) the function field of C .

• Let G = GL(n) and g = Lie(GL(n)).

• A ring of adèles of F and O =
∏

c∈|C | Ôc ⊂ A

• Let $D = ($
multc (D)
c )c∈|C | ∈ A×

• Let χ ∈ A(k) and Hχ be the set of

(g , γ) ∈ G (A)/G (O)× g(F ) s.t.

1. deg(det(g)) = 0
2. χγ = χ
3. g−1γg ∈ $−1

D g(O)

• The group G (F ) acts on Hχ by δ · (g , γ) = (δg , δγδ−1)

Lemma
The Hitchin fibre f −1(χ)(k) is the quotient groupoid [G (F )\Hχ].



Counting points of elliptic Hitchin fibers
Let Aell ⊂ Arss ⊂ A be the open subsets defined by

• Aell = {χ ∈ Aell | χ is irreducible in F [X ]}
• Arss = {χ ∈ Aell | χ is square-free in F [X ]}

Lemma (Ngô)

Let χ ∈ Arss and γ ∈ g(F ) s.t. χγ = χ. Let (γc)c = $Dγ ∈ g(A).
We have

f −1(χ)(k) ' [G (F )\Hχ] ' [T (F )\
∏
c∈|C |

Xγc (k)]

where T is the centralizer of γ in G and Xγc is an affine Springer
fiber. Moreover if k = Fq, we have

|f −1(χ)(Fq)| = vol(T (F )\T (A)0)
∏
c

Oγc

where vol(T (F )\T (A)0) <∞ iff χ ∈ Aell(Fq).



A slight variant of the Hitchin fibration

Let ∞ ∈ C a closed point, ∞ /∈ supp(D).
Let A∞ ⊂ Arss be the open subset of χ ∈ A such that χ∞ has
only simple roots.
Let A be the étale Galois cover of A∞ of group Sn given by

A = {(χ, τ) ∈ A∞ × kn|χ∞ =
n∏

i=1

(X − τi )}

Let (E , θ, χθ, τ) ∈M×A A. Then θ∞ is a regular semi-simple
endomorphism of E∞. Let

M→M×A A

be the Gm-torsor we obtain by choosing an eigenvector e1 in the
line Ker(θ∞ − τ1 IdE∞).
Remark The additional datum e1 “kills” the automorphisms
coming from the center of G .



By base change, we have a Hitchin fibration still denoted f

M→M×A A → A

So M classifies (E , θ, τ, e1) s.t.

• (E , θ) is Higgs bundle s.t. θ∞ is regular semi-simple

• τ = (τ1, . . . , τn) is the ordered collection of eigenvalues of θ∞

• e1 ∈ E∞ is an eigenvector of (θ∞, τ1).

By deformation theory, we have

Theorem (Biswas-Ramanan)

The algebraic stack M is smooth over k.



The spectral curve of
Hitchin-Beauville-Narasimhan-Ramanan

Let ΣD = Spec
(⊕∞

i=0OC (−iD)X i
)
→ C the whole space of the

divisor D.
Let a = (χ, τ) ∈ A.
The spectral curve Ya is the closed curve in ΣD defined by the
equation

χ(X ) = X n − a1X n−1 + . . .+ (−1)nan = 0.

The canonical projection πa : Ya → C is a finite cover of degree n,
which is étale over ∞. We have a natural identification

π−1
a (∞) = {∞1, . . . ,∞n} ∼= {τ1, . . . , τn}.



Properties of the spectral curve Ya

Recall a = (χ, τ) ∈ A
• Ya is reduced (since χ ∈ Arss)

• Ya is connected

• Ya is not always irreducible: Ya is irreducible ⇐⇒ a ∈ Aell

(there are as many irreducible components of Ya as irreducible
factors of χ ∈ F [X ])

• Its arithmetic genus defined by

qYa = dim(H1(Ya,OYa)) = dim(H1(C , πa,∗OYa))

does not depend on a. In fact,

πa,∗OYa = OC ⊕OC (−D)⊕ . . .⊕O((−n + 1)D)

and qYa = n(n−1)
2 deg(D) + n(g − 1) + 1.



Hitchin-Beauville-Narasimhan-Ramanan correspondence

Theorem (H-BNR)

Let a ∈ A. The Hitchin fiber Ma = f −1(a) is isomorphic to the
stack of torsion-free coherent OYa-modules F of degree 0 and rank
1 at generic points of Ya, equipped with a trivialization of their
stalk at ∞1.

Construction: the multiplication by X gives a section

OYa → π∗aOC (D).

For such a F , we get a morphism F → F ⊗OYa
π∗aOC (D) and

θ : πa,∗F → πa,∗(F ⊗OYa
π∗aOC (D)) = πa,∗(F)(D)

We associate to F the Higgs bundle (πa,∗F ⊗OC
OC (n−1

2 D), θ).



Let Asm the open set of a such that Ya is smooth. One has
Asm 6= ∅.

Corollary

For a ∈ Asm, the Hitchin fiber Ma is the Jacobian of Ya. In
particular, it is an abelian variety.

Let a ∈ A.
Let Pic0(Ya) the smooth commutative group scheme of line
bundles on Ya of degree 0, equipped with a trivialization of their
stalk at ∞1.
By H-BNR correspondence, Pic0(Ya) acts on Ma.
Let Mreg

a ⊂Ma be the open sub-stack (E , θ, τ, e1) ∈Ma such
that θc is regular for any c ∈ C .

Lemma
Mreg

a is a Pic0(Ya)-torsor.



Dimension of Hitchin fibers Ma

As a consequence of the work of Altmann-Iarrobino-Kleiman on
compactified Jacobian, Ngô gets the following theorem

Theorem

• Mreg
a is dense in Ma.

• dim(Ma) = dim(Mreg
a ) = dim(Pic0(Ya)) = qYa (=arithmétic

genus of Ya) does not depend on a.

• Irr(Ma) is a torsor under the abelian group
π0(Pic0(Ya)) ' {(ni ) ∈ ZIrr(Ya) |

∑
i ni = 0}

Corollary

• dim(M) = n2 deg(D) + 1.

• Ma is irreducible if and only if a ∈ Aell.



Some examples
Let C = P1

k ⊃ Spec(k[y ]) 3 ∞, D = 2[0], n = 2.
Let p(y) ∈ k[y ] of degree 4 and τ ∈ k× s.t. τ2 = p(0) 6= 0.
Let a = (X 2 − p(y), (τ,−τ)) ∈ A.
Ya is of genus qYa = 1 = dim(Ma).
Examples of spectral curves Ya

In the first 3 pictures, Ya is irreducible and Ma ' Ya.



Support theorem on the elliptic locus
As a consequence of results of Altmann-Kleiman, the elliptic
Hitchin morphism

f ell :Mell =M×A Aell → Aell

is proper and Mell is a smooth scheme over k .
By Deligne theorem, the complex of `-adic sheaves Rf ell

∗ Q̄` is pure.
By Beilinson-Bernstein-Deligne-Gabber decomposition theorem,
the direct sum of its perverse cohomology sheaves is semi-simple:

pH•(Rf ell
∗ Q̄`) =

⊕
i

pHi (Rf ell
∗ Q̄`)

Theorem (Ngô’s support theorem)

The support of any irreducible constituent of pH•(Rf ell
G ,∗Q̄`) is Aell.

Remarks

• The theorem is in fact only proved on a big subset of A.

• Orbital integrals are “limits” of the simplest orbital integrals.



For other reductive groups G ?

• The support theorem is not true as stated.

• Let’s consider the example G = SL(2). The Hitchin space
MG classifies (E , θ, τ, e1) as before with

• E is a vector bundle of degree 2 and trivial determinant
det(E) = OC .

• θ : E → E(D) is a traceless twisted endomorphism.

• The Hitchin base AG classifies pairs a = (X 2 − a2, τ) where
a2 ∈ H0(C ,O(2D)) s.t. a2(∞) = τ2 6= 0.

• We have a Hitchin morphism f :MG → AG defined by
f (E , θ, τ, e1) = (det(θ), τ).

• A Hitchin fiber Ma is isomorphic to the stack of rank 1,
torsionfree OYa-modules F which satisfy det(πa,∗F(D2 )) = OC

• The group Pa acts on Ma.

Pa := Ker(Norm : Pic0(Ya)→ Pic0(C )).



The example of SL(2)

• Let a ∈ Aell and ρa : Xa → C obtained from the normalization
Xa → Ya and πa : Ya → C .

• Either the group Pa is connected or π0(Pa) = Z/2Z.
• Pa is not connected iff ρa : Xa → C is étale.

Let L ∈ Pic0(C )[2] attached to Xa. Moreover there exists

b ∈ H0(C ,L(D))

s.t. b⊗2 = a2.

• The groups Pa come in a family P/Aell with a natural
morphism

Z/2Z→ π0(P/Aell).

• The group P acts on pH•(Rf ell
G ,∗Q̄`) through π0(P/Aell)

pH•(Rf ell
G ,∗Q̄`) = pH•(Rf ell

G ,∗Q̄`)+ ⊕ pH•(Rf ell
G ,∗Q̄`)−



Support theorem for SL(2)

• For any non-trivial L ∈ Pic0(C )[2],

AL = {b ∈ H0(C ,L(D)) | b(∞) 6= 0}.

• The map b 7→ (b⊗2, b(∞)) defines a closed immersion
AL ↪→ Aell

G .

• The AL are disjoint.

Theorem (Ngô’s support theorem)

1. The support of any irreducible constituent of pH•(Rf ell
G ,∗Q̄`)+

is Aell
G .

2. The supports of irreducible constituents of pH•(Rf ell
G ,∗Q̄`)− are

the AL.



Cohomological fundamental lemma for SL(2)

• Any non-trivial L ∈ Pic0(C )[2] defines an étale cover XL → C
and an endoscopic group scheme on C

HL = (XL ×Gm)/{±1}

• For H = HL, we have a Hitchin morphism f H :MH → AH

with AH = AL.

Theorem (Ngô)

Let ιH : AH → AG . We have up to a shift and a twist

ι∗H
pH•(Rf ell

G ,∗Q̄`)− ' pH•(RfH,∗Q̄`)

By the Grothendieck-Lefschetz trace formula, this gives a global
version of the fundamental lemma for G = SL(2).



GL(n) case : outside the elliptic locus

• The properness of f ell is crucial in Ngô’s proof.

• Outside Aell, the Hitchin fibration is neither of finite type nor
separeted.

• To get Arthur’s weighted fundamental lemma, we have to
look outside Aell.

• For each ξ = (ξ1, . . . , ξn) ∈ Rn, let’s say that
m = (E , θ, τ, e1) ∈M is ξ-stable iff for any θ-invariant
sub-bundle

0 ( F ( E

one has
deg(F) +

∑
i

ξi < 0

where the sum is over i s.t. τi is an eigenvalue of θ|F∞ .

Remarks there is only a finite number of θ-invariant F and none if
(E , θ) is elliptic.



Properness of Mξ

Let Mξ be the ξ-stable sub-stack of M for a generic ξ.

Theorem (Laumon-C.)

1. Mξ is an smooth open sub-stack of M which contains Mell.

2. The ξ-stable Hitchin fibration is proper.

f ξ :Mξ → A

3. For a ∈ A(Fq), |Mξ
a(Fq)| does not depend on ξ and is a

global Arthur’s weighted orbital integral.

4. Support theorem. The support of any irreducible constituent
of pH•(Rf ξG ,∗Q̄`) is A.

Here ξ generic means
∑

i∈I ξi /∈ Z for any ∅ 6= I ( {1, . . . , n}



A spectral curve with 2 components

Let’s go back to the example: C = P1
k ⊃ Spec(k[y ]) 3 ∞,

D = 2[0], n = 2.
Let a = (X 2 − (y 2 − 1)2, (1,−1)) ∈ A.
In this case, Ya has 2 irreducible components and looks like



An non-elliptic fiber
Ma is the quotient of the product of 2 Affine Springer fibers by
the diagonal action of Gm and the antidiagonal action of Z



An non-elliptic fiber

The action of Gm stabilizes each square with 1-dim. orbits, fixed
points and in black the quotient by Gm



An non-elliptic fiber

Up to some BGm, Ma looks like an infinite chain of non-separeted
P1 with double 0 and double ∞.



Stable part of Ma



Semi-stable part of Ma



ξ-stable part of Ma, ξ generic



We get ...


