Polarization-based Quantum Key Distribution Without Shared Reference Frame

By Jean Christian Boileau

Collaborators:

Daniel Gottesman Raymond Laflamme Martin Laforest Casey Myers David Poulin Rob Spekkens

Outline:

- Give new polarization-based QKD protocols based on decoherence-free subspace to overcome the problem of birefringence in optical fiber.
- Relate this to the problem of doing QKD without shared spatial reference frame or synchronized clocks.

Birefringence and Collective Noise

- The fiber acts like a random unitary transformation U(t) on the polarization states.
- The same transformation is applied to each photon if they are sent through the fiber at approximately the same time and if they have similar wavelength.
- ⁿ Collective noise on *n* photons: $U^{\otimes n}$

Past Implementation of Polarization-Based QKD

 Encode in polarization space and periodic calibration of the reference frame

Franson and Jacobs, Electron. Lett. **31** 232-234 (1995).

 Gives good result only if the fiber is in a stable environment

Decoherence-Free Subspace of the collective noise

# of	DFS
Photons	
1	None
2	01 angle - 10 angle
3	None
4	$ig(ig 01ig angle-ig 10ig angle)\otimesig(ig 01ig angle-ig 10ig angle)$ 2ig 1100ig angle+2ig 0011ig angle-ig 0101ig angle-ig 1010ig angle-ig 0110ig angle-ig 1001ig angle

How to create $(|01\rangle - |10\rangle) \otimes (|01\rangle - |10\rangle)$

In Use parametric-down conversion with short pump pulse reflected on a mirror.

Four Photon Protocol

$(|01\rangle - |10\rangle) \otimes (|01\rangle - |10\rangle) = \bullet \bullet \bullet$

Swap photons 2 and 4:

Swap photons 2 and 3:

Four Photon Protocol

The three previous states can be written as

$$\begin{aligned} |\psi_1\rangle &= |a\rangle - |b\rangle & \text{where } |a\rangle &= \frac{1}{2}(|0101\rangle + |1010\rangle) \\ |\psi_2\rangle &= |b\rangle - |c\rangle & |b\rangle &= \frac{1}{2}(|0110\rangle + |1001\rangle) \\ |\psi_3\rangle &= |c\rangle - |a\rangle & |c\rangle &= \frac{1}{2}(|0011\rangle + |1100\rangle) \end{aligned}$$

 \bigstar The states $|a\rangle, |b\rangle$ and $|c\rangle$ are mutually orthogonal.

$$\bigstar \quad \langle \psi_j | \psi_i \rangle = \frac{1}{2} \text{ for } i \neq j.$$

Three Photon Protocol

Two Photon Protocol

- Recently Walton et. Al. (*PRL*, **91** 087901 2003.) proposed a new protocol robust against phase instability in the interferometers that use photon pairs entangled in time.
- Can we improve their scheme using polarization?

with a probability that depends on $U^{\otimes 2}$.

Conclusion: I showed....

- a three state protocol quantum key distribution without any shared reference frame and
- a two photon protocol that does not need synchronized clock and that is robust again interferometer's instability and birefringence.

Collaborators:

- n Three and four Photon Protocol
 - n Daniel Gottesman
 - n Raymond Laflamme
 - n David Poulin
 - Rob Spekkens
- n PRL 91 017901 (2004)
- Special thanks to Gilles
 Brassard

n Two Photon Protocol

- Raymond Laflamme
- n Martin Laforest
- n Casey Myers
- n quant-ph/0406118
- Special thanks to Joseph Emerson

