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OutlineOutline

• Two methods of controlling quantum systems: 
Quantum error correction vs. quantum feedback

• Combining quantum error correction with quantum 
feedback: controlling/protecting state by correcting for a 
specific error process

– Two-qubit code + driving Hamiltonian for spontaneous 
emission

– n-qubit code + driving Hamiltonian, protecting (n-1) logical 
qubits for arbitrary error channel



Dealing with hostile environments
or: Quantum error correction (QEC) and Quantum control (QC)

Dealing with hostile environments
or: Quantum error correction (QEC) and Quantum control (QC)
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Goal:
• QC: protect quantum state
• QEC: protect unknown 
quantum state

• QC: continuous measurements
• QEC: projective measurements

• QC: Hamiltonian feedback
• QEC: unitary gates (Compute)

•Ahn, Doherty, Landahl (PRA 65, 042301 (2002))



A different error modelA different error model

Canonical error correction:

Our scheme:dominant error process: we know when and 
where the error has occurred, and which one it is.
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Continuous detection: master equationContinuous detection: master equation

Kraus operators:

Unconditional master equation without feedback

“Jump” term

“No-jump” term

Lindblad form

An error correction protocol must
• Be able to correct errors due to Ω1
• Find way to get rid of no-jump error due to Ω0



Continuous detection: adding feedback 
(jump evolution)

Continuous detection: adding feedback 
(jump evolution)

Add feedback via Hamiltonian V that is proportional to the 
measurement signal:

Resulting master equation:

H.M. Wiseman, PRA 49, 2133 (1994), PRA 50, 4428 (1994)

Adds unitary to 
decohering operator

System Observe



Example: Spontaneous emissionExample: Spontaneous emission

Kraus operators:

Nontrivial no-jump 
evolution!



Previous work: Spontaneous emissionPrevious work: Spontaneous emission

• Plenio, Vedral, Knight (PRA 55,  67  (1997)): 8-qubit code
– One arbitrary error, no-emission evolution

• Leung et al. (PRA 56, 2567 (1997)): 4-qubit code
– One spontaneous emission error, no-emission evolution to first 

order
• Alber et al. (PRL 86,  4402  (2001)): 4-qubit code

– More specific problem:
• Spontaneous emission from statistically independent reservoirs
• Only errors possible are spontaneous emission errors
• Time and position of each error is known

– One spontaneous emission error, no-emission evolution
• AWM: 2-qubit code with driving Hamiltonian

– Alber et al’s problem
– One spontaneous emission error, no-emission evolution



Spontaneous emission: Two-qubit code (Jump 
evolution)

Spontaneous emission: Two-qubit code (Jump 
evolution)

Codewords:

Kraus operators:

These operators correspond to correctable errors: they obey the 
condition

for orthogonal codewords ψµ, ψν.

These operators can be corrected by applying a suitable unitary;
A suitable unitary can be generated by a feedback Hamiltonian;
⇒ Errors can be corrected via a feedback Hamiltonian

These states are +1 eigenstates of XX: XX is stabilizer

PRA 55, 900 (1997)



Spontaneous emission: What about getting rid of 
the no-jump evolution?

Spontaneous emission: What about getting rid of 
the no-jump evolution?

• For this two-qubit system, the no-jump Kraus operator is

• First guess: 
– No because H is then not Hermitian!

• Better:
Then

Add a Hamiltonian?

Annihilates codespace



Putting it all togetherPutting it all together

The final master equation:

Acts trivially on 
code subspace

Uj is unitary correcting for error cj

Evolution preserves code subspace.

Addition of Hamiltonian gives Kraus operator that preserves code 
subspace while allowing small redundancy!



General case: (very quick) stabilizer reviewGeneral case: (very quick) stabilizer review

• Define Pauli group as

• Given 2n-dim Hilbert space, a stabilizer S is a subgroup of 2n-k

commuting elements of the Pauli group

• Properties of codespace associated with this stabilizer:
– It is the +1 simultaneous eigenspace of the stabilizer group:

– It encodes k logical qubits in n physical qubits

D. Gottesman, PRA 54, 1862 (1996)



General error and unravelingGeneral error and unraveling

• Code with stabilizer S:

• Different unravelings of master equation parametrized by γ:

• Recall that the condition 
determines whether the error is correctable, and note

• Familiar sufficient condition for stabilizer code: 
Stabilizer anticommutes with traceless part of 

a, b complex
D Hermitian

{S,D} = 0 If this is true, feedback can 
correct the state.



General unraveling: no-jump evolutionGeneral unraveling: no-jump evolution

• No-jump evolution is given by

• Choose driving Hamiltonian

• Check: Hermitian? Yes, because   {S,D} = 0.
• Total Ω0 evolution is now

Annihilates codespace!

{S,D} = 0

Assume



Generalization to n qubits:Generalization to n qubits:

Let {cj} be a set of errors such that cj (with associated operator Dj) 
acts on the jth qubit alone.  
Since Dj is traceless, it is always possible to find some other 
Hermitian traceless one-qubit operator sj such that

Then we may pick the stabilizer group by choosing the single 
stabilizer generator

Now choose the driving Hamiltonian

Encodes n-1 qubits in n!
• No-jump evolution corrected!

• cj errors are correctable

Ahn, Wiseman, Milburn PRA 67, 052310 (2003)



Multiple channelsMultiple channels

Previously we assumed only one perfectly measured channel per 
qubit. Let us now assume there is more than one channel we can 
measure. Can we still perfectly correct?

Choose stabilizers

(This is just the four-qubit error correction code!)

Decompose an error operator D as 
It is always possible to find some Sj such that
Set
Then 

Encodes n-2 qubits in n!

Ahn, Wiseman, Jacobs, to appear in PRA (2004)



…but life isn’t perfect…but life isn’t perfect

• What if we don’t know the error rate perfectly?
– For error rate κ, using κ(1+ε) in the analysis instead of κ results 

in a state that differs to first order in ε.

• Detection inefficiency η:
– If detection efficiency is a more realistic 

the jump master equation acquires an extra term

– This results in exponential decay of coherence of the subspace!
• This is a property of any continuous error-correction protocol that 

relies on correcting errors instantaneously after they occur
• Tradeoff between computational complexity and robustness to error



SummarySummary

• Possible to understand a particular variant of quantum 
control as quantum error correction

• Showed error correction protocol with following 
properties:
– Can correct any single qubit detected errors 
– Requires only n physical qubits to encode n-1 logical qubits
– Can show that this protocol allows for universal quantum 

computation
• More questions

– A compromise between computational complexity and 
robustness? How to characterize?

– Using control theory techniques to further explore problem of 
stabilizing subspace?

– Qudits?
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