

MAX PLANCK RESEARCH GROUP



Institute of Optics, Information and Photonics University Erlangen-Nuremberg



# Quantum Correlations as Necessary Precondition for Secure Communication

Phys. Rev. Lett. **92,** 217903 (2004) quant-ph/0307151

### Marcos Curty<sup>1</sup>, Maciej Lewenstein<sup>2</sup>, Norbert Lütkenhaus<sup>1</sup>

<sup>1</sup> Institut für Theoretische Physik and Max Planck Research Group Universität Erlangen-Nürnberg

<sup>2</sup> Institut für Theoretische Physik Universität Hannover





- Interface Physics Computer Science in Quantum Communication
  - Physics provides correlations with a promise
  - Computer Science uses correlations within complex communication task
- Classical and Quantum Correlations
  - If Physics is to add something, then we need correlations with quantum features
- 'Entanglement' as necessary conditions for quantum communication
- Exploitation of conditions
  - entanglement witnesses
  - application to 6-state, 4-state and 2-state protocol (QKD)
- Conclusions



# Bennett Brassard Protocol





# Quantum Communication and Correlations

#### **Phase I: Physical Set-Up**

Generation of correlations between Alice and Bob

→ possibly containing hidden correlations with Eve

**Physics:** correlated data with a promise.

Which type of correlations are

useful for Quantum Communication?

### (Classical) Computer Science:

Solve Communication Problem with classically correlated data ...

#### **Phase II: Classical Communication Protocol**

Advantage distillation (e.g. announcement of bases in BB84 protocol) Error Correction (→ Alice and Bob share the same key) Privacy Amplification (→ generates secret key shared by Alice and Bob) Note: classical communication for QKD can be improved:

e.g. in QKD with weak light pulses [Acín, Gisin, and Scarani, Phys. Rev. A 69, 012309 (2004)] or two-way communication [Lo, Gottesman, guant-ph/0105121]





### Key extraction from correlated classical data

Lower bound on secrecy capacity C<sub>S</sub>: (rate of secret communication between Alice and Bob) - Csiszar, Körner, IEEE, IT 24, 339 (1978).

$$C_{S} > \max \{I_{AB} - I_{AE}, I_{AB} - I_{BE}\}$$

Derived for classical three-party correlations Eve: quantum system! I. Devetak, A. Winter, quant-ph/0307053.

#### <u>Upper Bounds on secrecy capacity C<sub>S</sub>:</u>

- U. M. Maurer, IEEE Trans. Inf. Theo. 39, 1733 (1993); -U. Maurer and S. Wolf, IEEE T. I. T. **45**, 499 (1999).

$$Cs \le I(A; B \downarrow E)$$

#### • Intrinsic Information: I(A;B↓E)

 $I(A,B\downarrow E) = \min_{E\to \underline{E}} I(A;B|\underline{E}) \text{ with } I(A;B|E) = H(A,E) + H(B,E) - H(A,B,E) - H(E)$ 

<u>Quantum</u>

$$P_{F}(A,B,E) = P(a,b) \operatorname{Tr} (\rho_{E}(a,b) F_{E})$$

$$I(A;B\downarrow E) = \inf_{F} I_{F}(A,B|E)$$

'Information' Bob can gain about Alice's data by looking at his own data, whatever Eve told him about Alice's data.



### Intercept/Resend attack



→P(a,b,e)=p(a,e) p(b|e) (Markov Chain)
→ Intrinsic information vanishes, no secret communication possible!

#### **Example:**

BB84 with

- •Poissonian photon number distribution
- •losses in the quantum channel
- •symmetric error rate in signals
- → implementing **specific** intercept/resend



#### [M.Curty, N.L, in preparation ]

(for vanishing error rate:

[Jahma, Dusek, NL, Phys. Rev. A 62, 022306 (2000)]





# Are these correlations useful?

### **Assumptions:**

trusted ideal source of ideal BB84 protocol  $\checkmark$ 

trusted ideal detector of ideal BB84 protocol

 $\times$ 

### **Probability Distribution P(A,B)**

|   | 0       | 1       | +       | -       |
|---|---------|---------|---------|---------|
| 0 | 0.07987 | 0.04516 | 0.00913 | 0.11591 |
| 1 | 0.04508 | 0.07986 | 0.11593 | 0.00901 |
| + | 0.11599 | 0.00909 | 0.08001 | 0.04507 |
| - | 0.00897 | 0.11593 | 0.04505 | 0.07985 |

Error Rate: 36%



# Entanglement behind the scene

How to generate correlated classical data:







# Necessary condition for secure communication

#### Knowledge available to Alice and Bob:

measurement POVM {A<sub>i</sub>}<sub>i</sub>, {B<sub>j</sub>}<sub>j</sub> (may contain imperfections!)
observed joint probability distribution P(A,B)
[red. density matrix ρ<sub>A</sub> (P&M schemes)]

#### Theorem (Entanglement Based and P&M):

• If P(A,B) together with  $\{A_i\}_i$ ,  $\{B_j\}_j$  [and  $\rho_A$  for P&M schemes] allows interpretation as separable state then I(A;B $\downarrow$ E) = 0, and therefore C<sub>S</sub> = 0.

M. Curty., M. Lewenstein and N. L, quant-ph/0307151.

#### Theorem: (converse)

•  $I(A;B\downarrow E) > 0$ iff P(A,B) together with  $\{A_i\}_i$ ,  $\{B_j\}_j$  cannot be interpreted as coming from a separable state.

-A. Acín and N. Gisin, quant-ph/0310054.

NOTE: does not guarantee a secret key ...

Observation of quantum correlation excludes intercept/resend attack!

Approach allows for realistic implementations! -detection inefficiency goes into {B<sub>i</sub>}<sub>i</sub>

-full mode description of sender and receiver



# Entanglement verification

### **Problem structure:**

- $\bullet$  Unknown density matrix  $\rho_{AB}$
- constraints via observed correlations (data) P(A,B) [for P&M schemes: fixed  $\rho_A$ ]
- Question: any separable  $\rho_{AB}$  compatible with constraints?

### Specific experiment and data:

search for entanglement proof (sufficient, not necessary)

- rule out separability e.g. via Bell inequality
- violation of local uncertainty relations [Hofmann, Takeuchi, PRA 68 032103 (2003)]
- numerical optimisation via entanglement witnesses [Eisert, Hyllus, Gühne, Curty, quant-ph/040713

### Specific experiment:

- general efficient numerical method for any possible data?
- find analytic complete necessary and sufficient condition for any possible data
  - $\rightarrow$  approach in following part for simple qubit protocols



# Entanglement Witnesses

#### Entangled States:

 $\rho_{AB}$  is entangled iff  $\rho_{AB} \neq \Sigma_i p_i |a_i\rangle\langle a_i|_A \otimes |b_i\rangle\langle b_i|_B$ 

#### Entanglement Witnesses (EW):

•  $\rho_{AB}$  is entangled iff  $\exists$  W hermitian such that:

$$\begin{split} &Tr\{W{\cdot}\rho_{AB}\} < 0 \\ &Tr\{W{\cdot}\sigma_{AB}\} \ge 0 \ \forall \ \sigma_{AB} \text{ separable} \end{split}$$

-M. Horodecki, P. Horodecki and R. Horodecki, Phys. Lett. A **223**, 1 (1996). -M.B. Terhal, Phys. Lett. A **271**, 319 (2000).

### Optimal EW (OEW):

-M. Lewenstein, B. Kraus, J.I. Cirac and P. Horodecki, PRA 62, 052310 (2000).







# Local Measurement of Entanglement Witnesses

#### **Decomposition of Witnesses in Local Measurements:**

Any bipartite hermitian operator W can be decomposed as a *pseudo-mixture*:

$$W = \Sigma_{ij} c_{ij} A_i \otimes B_j \qquad \text{with} \qquad c_{ij} \in \mathfrak{R}, \ \Sigma_{ij} c_{ij} = 1$$

where  $A_i \otimes B_i$  forms a POVM operator basis.

 $\rightarrow$  {A<sub>i</sub>}<sub>i</sub>, {B<sub>j</sub>}<sub>j</sub> describe measurements (positive, add up to identiy) <u>Evaluation</u>:

Then

Tr{W·
$$\rho_{AB}$$
} =  $\Sigma_{ij} c_{ij} Tr{A_i \otimes B_j \rho_{AB}} = \Sigma_{ij} c_{ij} P(a_i, b_j)$ 

- -O. Gühne, P. Hyllus, D. Bruss, A. Ekert, M. Lewenstein, C. Macchiavello and A. Sanpera, PRA 66, 062305 (2002).
- -O. Gühne, P. Hyllus, D. Bruss, A. Ekert, M. Lewenstein, C. Macchiavello and A. Sanpera, J. Mod. Opt. 50 (6-7), 1079 (2003).

<sup>-</sup>A. Sanpera, R. Tarrach and G. Vidal, PRA 58, 826 (1997).



### Necessary condition based on entanglement witnesses

#### Theorem:

• Given a set of local operations with POVM elements  $A_i \bigotimes B_j$  together with the probability distribution of their ocurrence, P(A,B), then the correlations P(A,B) cannot lead to a secret key via public communication unless one can prove the presence of entenglement in the (effectively) distributed state via an entanglement witnesses  $W = \sum_{ij} c_{ij} A_i \bigotimes B_j$  with  $c_{ij}$  real such that  $Tr\{W\sigma_{AB}\} \ge 0$  for all separable states  $\sigma_{AB}$  and  $\sum_{ij} c_{ij} P(i,j) < 0$ .

-M. Curty, M. Lewenstein and N. L., Phys. Rev. Lett. 92, 217903 (2004).

#### **Important point:**

entanglement witness criterion is necessary and sufficient even for restricted knowledge about the shared quantum state!

#### Idea:

states with verifiable entanglement form a convex set →restricted class of witnesses can testify the verifiable entanglement compatible with sep. verifyable entangled •  $\rho_{AB}$ 



Use three mutually unbiased bases: e.g. X,Y,Z direction in Bloch sphere

- Bruß, Phys. Rev. 81, 3018 (1998);
- Bechmann-Pasquinucci et al, PRA 59, 4238 (1999) .

Simplified thought experiment: use two-qubit state:



# 6-State QKD protocol

$$W_6 = \sum_{ij} c_{ij} \sigma_i \otimes \sigma_j$$

with 
$$\mathbf{i}, \mathbf{j} = \{0, \mathbf{x}, \mathbf{z}, \mathbf{y}\}$$
, and  $\sigma_0 = 1$ .

- Include all Optimal DEW:  $W = |\psi_e\rangle\langle\psi_e|^{T_B}$
- All entangled states can be detected.

Searching for quantum correlations:

- parametrize  $|\psi_e\rangle$
- evaluate locally Tr[ $\rho |\psi_e \rangle \langle \psi_e |^{T_B}$ ]
- search for negative expectation values



#### Use two mutually unbiased bases: e.g. X,Z direction in Bloch sphere

-C.H. Bennett and G. Brassard, Proc. IEEE Int. Conf. On Computers, System and Signal Processing, 175 (1984).

**Observation:** 

### 4-State QKD protocol

$$W_4^{EBS} = \sum_{ij} c_{ij} \sigma_i \otimes \sigma_j$$

with 
$$i, j = \{0, x, z\}$$
, and  $\sigma_0 = 1$ .

 $\rightarrow$  restricted class of witnesses

$$W \in W_4^{EBS}$$
 iff  $W = W^T = W^{T_B}$ 

- Alice and Bob cannot evaluate Optimal DEW.
- Not all entangled states can be detected.



# 4-State QKD protocol

### Optimal $W_4^{EBS}$ (OEW<sub>4</sub>) verifiable entangled with sep. $\rho_{AB}$ $W \in OEW_4^{EBS}$

#### **Observation:**

Given  $W \in W_4^{EBS}$ necessary to detect entanglement in state  $\rho_{AB}$  is that the operator

 $\Omega = \rho_{AB} + \rho_{AB}^{T} + \rho_{AB}^{T} + \rho_{AB}^{T}$ is a non-positive operator.

<u>Theorem</u>: The EW that are optimal within the four-state protocol are given by

$$OEW_4^{EBS} = \frac{1}{2}(Q+Q^{T_B})$$

with  $Q = |\psi_e\rangle\langle\psi_e|$  such that  $Q = Q^T$ 

-M. Curty., M. Lewenstein and N. L., quant-ph/0307151.

•  $OEW_4^{EBS}$  provides necessary and sufficient conditions for detection of quantum correlations in P(A,B).

• For P&M schemes we find  $OEW_4^{P&M} = OEW_4^{EBS}$ 



# Quantum Correlations? (II)

Assumptions: (BB84 setup) trusted ideal source

trusted ideal detector

#### **Probability Distribution P(A,B)**

| A∖B              | 0       | 1       | +       | -       |  |  |  |
|------------------|---------|---------|---------|---------|--|--|--|
| 0                | 0.07987 | 0.04516 | 0.00913 | 0.11591 |  |  |  |
| 1                | 0.04508 | 0.07986 | 0.11593 | 0.00901 |  |  |  |
| +                | 0.11599 | 0.00909 | 0.08001 | 0.04507 |  |  |  |
| -                | 0.00897 | 0.11593 | 0.04505 | 0.07985 |  |  |  |
| Error Rate: 36 % |         |         |         |         |  |  |  |



values are marked)

### Witness Class:

 $OEW_4^{EBS} = \frac{1}{2} \left( |\psi_e\rangle \langle \psi_e| + |\psi_e\rangle \langle \psi_e|^{T_B} \right)$ 

 $|\psi_{e}\rangle = \cos(X)|00\rangle + \sin(X)(\cos(Y)|01\rangle + \sin(Y)(\cos(Z)|10\rangle + \sin(Z)|11\rangle))$ 





Use two non-orthogonal states, e.g.,  $|\phi_0\rangle$  and  $|\phi_1\rangle$ 

-C.H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

<u>Theorem:</u>

The family

$$W_2 = |0\rangle\langle 0|\otimes A + |1\rangle\langle 1|\otimes B + x C(\theta)$$

with  $A = A^T$ ,  $B = B^T$ ,  $A \ge 0$ ,  $B \ge 0$ , rank(A) = rank(B) = 2,  $\theta \in [0, 2\pi)$ , and

 $\mathbf{x} = \min_{|\phi\rangle} (\langle \phi | \mathbf{A} | \phi \rangle \langle \phi | \mathbf{B} | \phi \rangle)^{1/2}$ 

is sufficient to detect all entangled states that are detectable in the 2-state protocol.

-M. Curty., O. Gühne, M. Lewenstein and N. L, (in preparation).

2-State EW:

$$W_{2} = \sum_{i} c_{i} \sigma_{0} \otimes \sigma_{i} + \sum_{j} c_{j} \sigma_{z} \otimes \sigma_{j} + \sum_{k} c_{k} \sigma_{k} \otimes \sigma_{0}$$

with  $i, j = \{x, z\}, k = \{0, x, z, y\}, and \sigma_0 = 1$ .

 $\rightarrow$  restricted class of witnesses





#### **iterface Physics – Computer Science:** Classical Correlated Data with a Promise

#### ecessary condition for secure QKD is the proof of presence of quantum correlations

#### uantum correlations: for entanglement based <u>and</u> prepare&measure schemes.

#### **For experiments:** show the presence of such entanglement

- •no need to enter details of classical communication protocols
- •prevents oversights in preliminary analyses
- •one properly constructed entanglement proof (e.g entanglement witness) suffices

#### For theory:

- show in which situation quantum correlations are **sufficient** to generate secret key
- develop figure of merit (secrecy capacity) to measure secrecy potential of correlations.
- develop proper entanglement proofs for realistic experiments ( for given measurements)
- develop **compact description for restricted class of entanglement witnesses** (allows effective search of quantum correlations)
- include **detection inefficiencies** into the witness construction