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I: Simplices

Definition:

Let {a0, a1, ..., ak} be points in Rn. This set is said to be geometrically independent if
the vectors

a1 − a0, a2 − a0, ..., ak − a0

are linearly independent (as in linear algebra).

Remark: We impose that singletons be considered geometrically independent.



Definition:

Let {a0, a1, ..., ak} be a geometrically independent set in Rn. A k-simplex σ spanned
by these points is the set of points x ∈ Rn such that

x =
k∑

i=0

tiai where
k∑

i=0

ti = 1

and ti ≥ 0 for all i.

Remark: A k-simplex spanned by a0, a1, ..., ak is the convex hull of these points.





Let σ be a k-simplex spanned by {a0, a1, ..., ak}.

Definition:

1. The points a0, a1, ..., ak are called the vertices of σ.

2. The number k is the dimension of σ.

3. Any simplex spanned by a subset of {a0, a1, ..., ak} is called a face of σ.

4. The face spanned by {a0, a1, ..., ak} − {ai} for some i is called the face opposite
to ai.



II: Simplicial Complexes

Definition:

A simplicial complex K in Rn is a collection of simplices in Rn (of possibly varying
dimensions) such that

1. Every face of a simplex of K is in K.

2. The intersection of any two simplices of K is a face of each.





Definition:

If L is a subcollection of K that contains all faces of its elements, then L is a simplicial
complex. It is called a subcomplex of K

Remark: Given a simplicial complex K, the collection of all simplices of K of dimension
at most p is called the p-skeleton of K and is denoted K(p).

e.g. K(0) is the set of vertices of K.

Definition:

If there exists an integer N such that

K(N−1) 6= K and K(≥N) = K,

then K is said to have dimension N . Otherwise it is said to have infinite dimension.

Remark: A simplicial complex K is said to be finite if K(0) is finite.



Topology:

Let K be a simplicial complex in Rn and consider the set

|K| =
⋃

σ∈K

σ.

There are two natural ways of putting a topology on |K|:

1) |K| being a subset of Rn, the subspace topology would be a natural choice.

2) Giving each simplex σ of K its natural topology as a subspace of Rn, declare a subset
A of |K| to be closed if

A ∩ σ

is closed in σ for all σ ∈ K.



Remarks:

1. The set |K| together with the second topology is the realization of K.

2. In general the second topology is finer (larger) than the first one.

3. These two topologies coincide for finite simplicial complexes.



Example:

Consider the following simplicial complex of the real line:

K = {[n, n + 1]}n 6=0

⋃ {
[

1

n + 1
,
1

n
]
}

n∈Z+
.

Clearly, as sets, |K| = R, but NOT as topological spaces,

e.g., the set
{

1
n

}
n∈Z+

is closed in |K| but not in R.

Definition:

A triangulation of a topological space X is a simplicial complex K together with a
homeomorphism

|K| −→ X.





III: Fields versus Principal Ideal Domains (PID)

Review:

Let R be a commutative ring with unity 1.

Remark: The ring R is an integral domain if it has no zero divisors.

A. Fields

Let R be a field and V and W be two finite dimensional R-vector spaces. Consider an
R-linear map

T : V → W.



Theorem A: If dim(V ) = dim(W ), then the following are equivalent

1. T is injective.

2. T is surjective.

3. T is an isomorphism.

Theorem B: The Im(T ) and Coker(T ) determines W , i.e.,

W ∼= Im(T )⊕ Coker(T ).



B. PIDs

Recall that a ring R is a PID if it is an integral domain and every ideal in R is principal,
i.e., each ideal in R has a generating set consisting of a single element. Thus we have
greatest common divisors (gcd’s).

e.g., the integers: Z.

Theorem C: If R is a field, then R[x] is a PID.

Theorem D: If R is a PID and M is a free R-module, then any submodule N of M
is free. Moreover, its rank is less than or equal to the rank of M .



Remarks:

1. When R is a PID, Theorem A is false in general, e.g.,

φ : Z ×2→ Z

is injective as a Z-linear map but not onto!

2. Theorem B is also false when R is a PID, e.g., consider the same map φ as in the
preceding example.

Z 6∼= 2Z⊕ Z/2Z.



C. Extensions

The last remark opens up a vast subject. Consider two R-modules A and C, and the
following diagram

A
i−→ ?

p−→ C.

Question: How many different R-modules M (up to isomorphism) can we put in the
middle of that diagram such that

1. the map i is injective;

2. the map p is surjective; and

3. Im(i) = ker(p) ?



Answer: Ext(C,A)

Theorem E: For any abelian group A and positive integer m we have

Ext(Z/mZ, A) ∼= A/mA.

e.g., Ext(Z/2Z,Z) = Z/2Z, i.e., there are two possible extensions

Z ×2−→ Z p−→ Z/2Z

and
Z i−→ Z⊕ Z/2Z p−→ Z/2Z



IV: Homology: detecting “nice” holes

A: Ordered simplices

Let σ be a simplex. Two orderings of its vertex set are equivalent if they differ by an
even permutation.

If dim(σ) > 0 then the orderings of the vertices of σ fall into two equivalence classes.

Each class is called an orientation of σ.

Definition:

An oriented simplex is a simplex σ together with an orientation of σ.

If {a0, a1, ..., ap} spans a p-simplex σ, then we shall use the symbol

[a0, a1, ..., ap]

to denote the oriented simplex.

Remark: Clearly 0-simplices have only one orientation.





B: p-chains

Let K be a simplicial complex and G an abelian group.

Definition: A p-chain of K with coefficients in G is a function cp from the oriented
p-simplices of K to G that vanishes on all but finitely many p-simplices, such that

cp(σ
′) = −cp(σ)

whenever σ′ and σ are opposite orientations of the same simplex.

The set of p-chains is denoted by Cp(K; G) . Moreover, it carries a natural abelian

group structure, i.e, given cp, ep ∈ Cp(K; G) we define

(cp + ep)(σ) = cp(σ) + ep(σ).

Remark: If p < 0 or p > dim(K), then we set Cp(K; G) = 0.



Special case: G = Z

If σ is an oriented simplex, there is an associated elementary chain c such that

1. c(σ) = 1;

2. c(σ′) = −1 if σ′ is the opposite orientation of σ; and

3. c(τ) = 0 for all other oriented simplices τ .

Remark: By abuse of notation we will use the symbol σ to represent the associated
elementary chain c, i.e.,

σ′ = −σ.



Theorem F:

Cp(K;Z) is a free abelian group; a basis can be obtained by orienting each p-simplex
and using the corresponding elementary chains as a basis.



Definition:

We now define a homomorphism

∂p : Cp(K;Z) → Cp−1(K;Z)

called the boundary operator.

Let p > 0 and σ = [v0, ..., vp] be an oriented simplex. Then

∂pσ =
p∑

i=0

(−1)i[v0, ..., v̂i, ..., vp]

where v̂i means that the vertex vi as been omitted.



Remarks:

1. It is routine to check that ∂p is well defined.

2. You then extend linearly (using Theorem F) to the full Cp(K;Z).

3. The boundary operators ∂≤0 are set to 0 since Cp<0(K;Z) = 0.



Examples:

1. 1-simplex: ∂1[v0, v1] = v1 − v0.

2. 2-simplex: ∂2[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1].

3. 3-simplex: ∂3[v0, v1, v2, v3] = [v1, v2, v3]− [v0, v2, v3] + [v0, v1, v3]− [v0, v1, v2].

Remark: Notice that ∂1 ◦ ∂2 = 0.

Theorem G: ∂p−1 ◦ ∂p ≡ 0.







Some computations:

K1: Notice that

∂1(c) = (a1 − a0) + (a2 − a1) + (a3 − a2)− (a3 − a0) = 0.

At first sight, ker(∂) seems to measure holes.

K2: It seems that K2 has three holes, since ∂1(v1) = ∂1(v2) = ∂1(c) = 0.

But clearly

c = v1 + v2,

i.e., in K1, dim(ker(∂1)) = 1, and in K2, dim(ker(∂1)) = 2.



K3: c, v1, and v2 are still in K3, but v2 is no longer representing a hole!

How do we get rid of it?

Consider the 2-simplex [a1, a2, a3].

Then

∂2[a1, a2, a3] = [a2, a3]− [a1, a3] + [a1, a2] = v2.

i.e., v2 ∈ Im(∂2).

These observations together with Theorem G (∂2 = 0), suggest the following.



Definition: Let

1. Zk = ker(∂k), which we call k-cycles; and

2. Bk = Im(∂k+1), which we call k-boundaries.

Remark: Theorem G implies that Bk ⊂ Zk.

Then the kth-homology group of K is

Hk(K;Z) = Zk/Bk.



Summary:

1. H1(K1) ∼= Z;

2. H1(K2) ∼= Z⊕ Z; and

3. H1(K3) ∼= Z. The cycles c and v1 in K3 actually represent the same homology class,
i.e., they differ by a boundary namely,

v1 = c − ∂[a1, a2, a3].



The effect of changing coefficients

Let T denote the torus and K the Klein bottle.

1. One can show that over Z

H1(T ;Z) ∼= Z⊕ Z and H2(T ;Z) ∼= Z,

while
H1(K;Z) ∼= Z⊕ Z/2Z and H2(K;Z) = 0.

2. If one considers Z/2Z-coefficients, then

H1(T ;Z/2Z) ∼= Z/2Z⊕ Z/2Z ∼= H1(K;Z/2Z)

and

H2(T ;Z/2Z) ∼= Z/2Z ∼= H2(K;Z/2Z)




