Simplicial Homology

I: Simplices

II: Simplicial Complexes

III: Fields versus Principal Ideal Domains (PID)

IV: Homology: detecting "nice" holes

Reference: J.R. Munkres, "Elements of Algebraic Topology", Perseus Publishing, 1984, ISBN 0-201-62728-0.

I: Simplices

Definition:

Let $\{a_0, a_1, ..., a_k\}$ be points in \mathbb{R}^n . This set is said to be geometrically independent if the vectors

 $a_1 - a_0, \quad a_2 - a_0, \quad \dots, \quad a_k - a_0$

are linearly independent (as in linear algebra).

Remark: We impose that singletons be considered geometrically independent.

Definition:

Let $\{a_0, a_1, ..., a_k\}$ be a geometrically independent set in \mathbb{R}^n . A <u>k-simplex</u> σ spanned by these points is the set of points $x \in \mathbb{R}^n$ such that

$$x = \sum_{i=0}^{k} t_i a_i$$
 where $\sum_{i=0}^{k} t_i = 1$

and $t_i \geq 0$ for all i.

Remark: A k-simplex spanned by $a_0, a_1, ..., a_k$ is the **convex hull** of these points.

Let σ be a k-simplex spanned by $\{a_0, a_1, ..., a_k\}$.

Definition:

- 1. The points $a_0, a_1, ..., a_k$ are called the **vertices** of σ .
- 2. The number k is the **dimension** of σ .
- 3. Any simplex spanned by a subset of $\{a_0, a_1, ..., a_k\}$ is called a **face** of σ .
- 4. The face spanned by $\{a_0, a_1, ..., a_k\} \{a_i\}$ for some *i* is called the **face opposite** to a_i .

II: Simplicial Complexes

Definition:

A simplicial complex K in \mathbb{R}^n is a collection of simplices in \mathbb{R}^n (of possibly varying dimensions) such that

- 1. Every face of a simplex of K is in K.
- 2. The intersection of any two simplices of K is a face of each.

Examples:

K1:

AD MARS

92

this 2-simplex together with all its faces is a simplicial complex.

{ {a0, a1, a2}, {a0, a1}, {a0, a2}, Ear, a23, Ear, Ear, Ear, Ear33

Is not a simplicial complex

Is a simplicial complex

K4:

K3:

Definition:

If L is a subcollection of K that contains all faces of its elements, then L is a simplicial complex. It is called a subcomplex of K

Remark: Given a simplicial complex K, the collection of all simplices of K of dimension at most p is called the p-skeleton of K and is denoted $K^{(p)}$.

e.g. $K^{(0)}$ is the set of vertices of K.

Definition:

If there exists an integer N such that

$$K^{(N-1)} \neq K$$
 and $K^{(\geq N)} = K$,

then K is said to have <u>dimension N</u>. Otherwise it is said to have infinite dimension.

Remark: A simplicial complex K is said to be <u>finite</u> if $K^{(0)}$ is finite.

Topology:

Let K be a simplicial complex in \mathbb{R}^n and consider the set

$$|K| = \bigcup_{\sigma \in K} \sigma.$$

There are two natural ways of putting a topology on |K|:

1) |K| being a subset of \mathbb{R}^n , the subspace topology would be a natural choice.

2) Giving each simplex σ of K its natural topology as a subspace of \mathbb{R}^n , declare a subset A of |K| to be **closed** if

 $A\cap \sigma$

is closed in σ for all $\sigma \in K$.

Remarks:

- 1. The set |K| together with the second topology is the **realization** of K.
- 2. In general the second topology is finer (larger) than the first one.
- 3. These two topologies coincide for finite simplicial complexes.

Example:

Consider the following simplicial complex of the real line:

$$K = \{[n, n+1]\}_{n \neq 0} \quad \bigcup \quad \left\{ [\frac{1}{n+1}, \frac{1}{n}] \right\}_{n \in \mathbb{Z}^+}.$$

Clearly, as sets, $|K| = \mathbb{R}$, but **NOT** as topological spaces,

e.g., the set $\left\{\frac{1}{n}\right\}_{n\in\mathbb{Z}^+}$ is closed in |K| but not in \mathbb{R} .

Definition:

A triangulation of a topological space X is a simplicial complex K together with a homeomorphism

$$|K| \longrightarrow X.$$

Examples:

K1:

[K1] is homeomorphic to the circle

|K3| =

III: Fields versus Principal Ideal Domains (PID)

Review:

Let R be a commutative ring with unity 1.

Remark: The ring R is an integral domain if it has no zero divisors.

A. Fields

Let R be a field and V and W be two finite dimensional $R\mbox{-vector spaces}.$ Consider an $R\mbox{-linear map}$

$$T: V \to W.$$

Theorem A: If dim(V) = dim(W), then the following are equivalent

- 1. T is injective.
- 2. T is surjective.
- 3. T is an isomorphism.

Theorem B: The Im(T) and Coker(T) determines W, i.e.,

 $W \cong Im(T) \oplus Coker(T).$

B. PIDs

Recall that a ring R is a PID if it is an integral domain and every ideal in R is principal, i.e., each ideal in R has a generating set consisting of a single element. Thus we have greatest common divisors (gcd's).

e.g., the integers: \mathbb{Z} .

Theorem C: If R is a field, then R[x] is a PID.

Theorem D: If R is a PID and M is a free R-module, then any submodule N of M is free. Moreover, its rank is less than or equal to the rank of M.

Remarks:

1. When R is a PID, Theorem A is false in general, e.g.,

 $\phi:\mathbb{Z}\stackrel{\times 2}{\to}\mathbb{Z}$

is injective as a \mathbb{Z} -linear map but not onto!

2. Theorem B is also false when R is a PID, e.g., consider the same map ϕ as in the preceding example.

 $\mathbb{Z} \not\cong 2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$

C. Extensions

The last remark opens up a vast subject. Consider two $R\text{-modules}\;A$ and C, and the following diagram

 $A \quad \stackrel{i}{\longrightarrow} \quad ? \quad \stackrel{p}{\longrightarrow} \quad C.$

Question: How many different R-modules M (up to isomorphism) can we put in the middle of that diagram such that

- 1. the map i is injective;
- 2. the map p is surjective; and
- 3. Im(i) = ker(p) ?

Answer: Ext(C, A)

Theorem E: For any abelian group A and positive integer m we have

$$Ext(\mathbb{Z}/m\mathbb{Z}, A) \cong A/mA.$$

e.g., $Ext(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$, i.e., there are two possible extensions

	Ζ-	$\xrightarrow{\times 2}$	\mathbb{Z}	\xrightarrow{p}	$\mathbb{Z}/2$	$2\mathbb{Z}$
\mathbb{Z}	$\stackrel{i}{\longrightarrow}$	$\mathbb{Z} \oplus$	$ i \mathbb{Z}/2^{2} $	Ζ.	\xrightarrow{p}	$\mathbb{Z}/2\mathbb{Z}$

and

IV: Homology: detecting "nice" holes

A: Ordered simplices

Let σ be a simplex. Two orderings of its vertex set are equivalent if they differ by an even permutation.

If $dim(\sigma) > 0$ then the orderings of the vertices of σ fall into two equivalence classes.

Each class is called an <u>orientation</u> of σ .

Definition:

An oriented simplex is a simplex σ together with an orientation of σ .

If $\{a_0, a_1, ..., a_p\}$ spans a *p*-simplex σ , then we shall use the symbol

$$[a_0, a_1, \dots, a_p]$$

to denote the oriented simplex.

Remark: Clearly 0-simplices have only one orientation.

Examples:

1-oriented simplex

3-oriented simplex

B: *p*-chains

Let K be a simplicial complex and G an abelian group.

Definition: A <u>p-chain of</u> K <u>with coefficients in</u> G is a function c_p from the oriented p-simplices of K to G that vanishes on all but finitely many p-simplices, such that

$$c_p(\sigma') = -c_p(\sigma)$$

whenever σ' and σ are opposite orientations of the same simplex.

The set of *p*-chains is denoted by $C_p(K;G)$. Moreover, it carries a natural abelian group structure, i.e, given $c_p, e_p \in C_p(K;G)$ we define

$$(c_p + e_p)(\sigma) = c_p(\sigma) + e_p(\sigma).$$

Remark: If p < 0 or p > dim(K), then we set $C_p(K; G) = 0$.

If σ is an oriented simplex, there is an associated elementary chain c such that

1. $c(\sigma) = 1;$

2. $c(\sigma') = -1$ if σ' is the opposite orientation of σ ; and

3. $c(\tau) = 0$ for all other oriented simplices τ .

Remark: By abuse of notation we will use the symbol σ to represent the associated elementary chain c, i.e.,

 $\sigma' = -\sigma.$

Theorem F:

 $C_p(K;\mathbb{Z})$ is a free abelian group; a basis can be obtained by orienting each *p*-simplex and using the corresponding elementary chains as a basis.

Definition:

We now define a homomorphism

$$\partial_p : C_p(K;\mathbb{Z}) \to C_{p-1}(K;\mathbb{Z})$$

called the boundary operator.

Let p > 0 and $\sigma = [v_0, ..., v_p]$ be an oriented simplex. Then

$$\partial_p \sigma = \sum_{i=0}^p (-1)^i [v_0, ..., \hat{v}_i, ..., v_p]$$

where \hat{v}_i means that the vertex v_i as been omitted.

Remarks:

- 1. It is routine to check that ∂_p is well defined.
- 2. You then extend linearly (using Theorem F) to the full $C_p(K;\mathbb{Z})$.
- 3. The boundary operators $\partial_{\leq 0}$ are set to 0 since $C_{p<0}(K;\mathbb{Z}) = 0$.

Examples:

- 1. 1-simplex: $\partial_1[v_0, v_1] = v_1 v_0.$
- 2. 2-simplex: $\partial_2[v_0, v_1, v_2] = [v_1, v_2] [v_0, v_2] + [v_0, v_1].$
- 3. 3-simplex: $\partial_3[v_0, v_1, v_2, v_3] = [v_1, v_2, v_3] [v_0, v_2, v_3] + [v_0, v_1, v_3] [v_0, v_1, v_2].$

Remark: Notice that $\partial_1 \circ \partial_2 = 0$.

Theorem G: $\partial_{p-1} \circ \partial_p \equiv 0.$

Analogy with calculus

Detecting Holes: Simplicial Homology

Some computations:

 K_1 : Notice that

$$\partial_1(c) = (a_1 - a_0) + (a_2 - a_1) + (a_3 - a_2) - (a_3 - a_0) = 0.$$

At first sight, $ker(\partial)$ seems to measure holes.

K₂: It seems that K_2 has three holes, since $\partial_1(v_1) = \partial_1(v_2) = \partial_1(c) = 0$. But clearly

$$c = v_1 + v_2,$$

i.e., in K_1 , $dim(ker(\partial_1)) = 1$, and in K_2 , $dim(ker(\partial_1)) = 2$.

 K_3 : $c, v_1, and v_2$ are still in K_3 , but v_2 is no longer representing a hole! How do we get rid of it?

Consider the 2-simplex $[a_1, a_2, a_3]$.

Then

$$\partial_2[a_1, a_2, a_3] = [a_2, a_3] - [a_1, a_3] + [a_1, a_2] = v_2$$

i.e., $v_2 \in Im(\partial_2).$

These observations together with Theorem G ($\partial^2 = 0$), suggest the following.

${\bf Definition:} \ {\rm Let}$

- 1. $Z_k = ker(\partial_k)$, which we call k-cycles; and
- 2. $B_k = Im(\partial_{k+1})$, which we call k-boundaries.

Remark: Theorem G implies that $B_k \subset Z_k$.

Then the k^{th} -homology group of K is

$$H_k(K;\mathbb{Z}) = Z_k/B_k.$$

Summary:

- 1. $H_1(K_1) \cong \mathbb{Z};$
- 2. $H_1(K_2) \cong \mathbb{Z} \oplus \mathbb{Z}$; and
- 3. $H_1(K_3) \cong \mathbb{Z}$. The cycles c and v_1 in K_3 actually represent the same homology class, i.e., they differ by a boundary namely,

$$v_1 \quad = \quad c \quad - \quad \partial[a_1, a_2, a_3].$$

The effect of changing coefficients

Let T denote the torus and K the Klein bottle.

1. One can show that over \mathbbm{Z}

 $H_1(T;\mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$ and $H_2(T;\mathbb{Z}) \cong \mathbb{Z}$,

while

$$H_1(K;\mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$
 and $H_2(K;\mathbb{Z}) = 0.$

2. If one considers $\mathbb{Z}/2\mathbb{Z}\text{-coefficients},$ then

 $H_1(T; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \cong H_1(K; \mathbb{Z}/2\mathbb{Z})$

and

$$H_2(T; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \cong H_2(K; \mathbb{Z}/2\mathbb{Z})$$