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Overview

e Topological sigma model
= intersection theory on complex loop space.

e “Complex loop space” of a projective manifold
X:
{f:¥— X holo.}

o Fix fx[X] = d € Ho(X,Z), genus(X) = g; but
allow X to vary, and decorate X by finitely many
points p1, .., pr.. The mapping space is a finite di-
mensional quasi-projective variety:.

e Problem: Do intersection theory on (modified ver-
sion of) this mapping space.



e Naive approach:

e Mapping space is a quasi-projective variety

Mg,k(d> X) — {<Zv /i, ’xk)}

with expected dimension, say R.

e Incidence conditions: fix cycles V7,.., Vi in X
with
>codim V; = R

and require that

flz;) € V.



o {(X, f,z1,..,x1)|f(x;) € V;} should have dimen-
sion 0. Regarded as a 0-cycle, its degree would be
number:

V1, .., Vi) — a number

BUT...

e M, .(d, X) is noncompact and typically has the
wrong dimension.

e The incidence conditions need not cut down to 0
dimension.

e Ruan-Tian (symplectic), Kontsevich (algebraic):
formulate intersection theory on compactified map-
ping spaces.



e Stable map moduli space:

Mg’k(d, X) L= {(C, f, Ly ey :L’k)}/ ~
where C' is a genus g projective curve, at worst
nodal. f: C — X is a degree d map, and z1, .., T}
are smooth points on C.

e Stability condition:
if f(C1) = pt then C, together with its special
points, has no infinitesimal auto.

e Equiv. relation:
(C, fox1, . xp) ~ (C f 2, .., x)) if there is an
isomorphism h
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o\ 7, 1.(d, X') can have impure dimension. Li-Tian

construct a cycle in Chow group Ap(M, i (d, X))
(cf. Fukayo-Ono, Behrend-Fentachi, Ruan, Siebert):
virtual fundamental cycle for M, 1.(d, X).

e Notation: LT} 1(d, X) be the virtual fundamen-
tal cycle of M, j(d, X) of pure dimension

R={c1(X),d)y+ (1 —g)dim(X)+k — 3.

e It plays the role of the fundamental cycle of a
compact manifold.



Problem

e [ix a vector bundle £ on M 1.(d, X), and a char.

class b(E) € A"(M, 1(d, X)) Fix cohomology
classes wq, .., wr on X. Study the integrals

Kp = Jor, (d.X) ejwi - erwy b(E).
D = (g,k;d).

e For simplicity, will restrict to w1 = -+ = wp. =
1. All results here have been generalized to the
case when w; are arbitrary. The class b will be
Euler class, Chern polynomial, or more generally
any multiplicative class.



e Definition: A vector bundle V' — X is called
convex if HY(PL, f*V) = 0 for any holomorphic
map [ : Pl — X.

e A convex bundle induces

Vy HY(C, f*V)
! !
My j.(d, X) (C, ).

e Examples: the tangent bundle of X = P"; any
positive power of the hyperplane bundle.

e Similarly for concave bundle V: HY(C, f*V) = 0,
V. C — X genus g maps.

e Denote by B = Vp — M 1.(d, X), D = (g, k; d),
the vector bundle induced by a convex/concave bun-

dle V.. Also write V) — My 4 1(d, X).



The Gluing Identity

e Enlarge M, 1.(d, X) to

Mp = M, ;((1,d),P' x X).

The projection Pt x X — X induces a map
Mp » ngk(d, X).

Pulling back b(Vp) via 7, we get a cohomology class
m*b(Vp) on Mp.

e C* acts on Pl by the standard rotation. This
induces an C* action on Mp. Will do localization
on M p relative to this action.

e [lach fixed point in Mp comes from gluing pairs

in Mgy, p,+1(d1, X) X My, p,+1(do, X) at a marked

point . Here D = D+ Dy where D; = (g;, k;; d;).



e Call this component Fp, p,, and 7 : Fp, p, —
Mp inclusion. There are two natural projection
maps

Po - FDl,DQ — Mgl,kﬁ—l(dle)

Poo - FD1,D2 — gl,kl—l-l(dl? X)
Pulling back b(Vp, ) via po, and b(V]),) via peo, we
get cohomology classes p(ib(Vp,) and pSb(Vp,) on
Fpy,Dy

e Theorem(Gluing Identity): On Fp, p, we have
identity of cohomology classes:

P*TH(VD) = pib(Vh,) pb(Vh,)

e Next: transfer this identity to some simple man-
ifold...
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Functorial localization

e Given f : A — B, a G-equiv. map of G mani-
folds: .
i) FoL A

gl 1J
E & B
For w € H{(A), we have identity on E:
Jpf+(Ww) (W)

ec(E/B) ~ Treq(F/A)
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Comparison theorem

e There is a version for stable map moduli:
v Fp, p, = Mp
plays the role of 1 : FF — A. Evaluation map
e: Fp, p, =X
evaluating at gluing point plays the role of g : F' —
E.

e ['ix a projective embedding X C P". Each map
stable (f,C,x1,..,xz) is a degree (d,1) map into
X x Pl cP"x Pl

e Corresponding to this are n+1 polynomials f;(wq, wy)
each vanishing of order d; at [a;, b;] € PL.
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e Theorem(Li-Lian-Liu-Yau): The corrrespondence

(f7 Oa L1, "73:]6) = [fO) ) fn]

defines an equivariant morphism ¢ : Mp — Ny
where N is the projective space of (n + 1)-tuple of
polynomials of degree d.

e The fixed points in N, are copies of P". There
is a similar theorem if we have an embedding X C
P71 x...xP"n Then N,is replaced by a product
Wy of Ng's. Label the fixed points by Yy, 4,, and
inclusion

7:X C Yd17d2 — Wy.

e Putting together a commutative square:

FDl,DQ i> MD
el o |y
x L owy
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e Theorem: (Comparison Theorem) For any equiv-
ariant class w on M p, we have an identity on X:

7 ex(w N LTp) e 7w N [FDlaDQ]

e(X/Wy) “e(Fp, p,/Mp)’
Denote the RHS by Jp, p,w.

e Theorem: Consider the integral

Kp = Jrr, .(d.x) (VD).
Suppose the integrand has the right degree. Then
Ix e " Jo pr*b(Vp) = (=1)9(2—2g —d - 1)K p.

e Thus the goal is to compute the numbers K p by
first computing the classes Jp, p,m*b(Vp) on X,
Let’s restrict to g = 0 and k£ = 0 for simplicity.
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Solving the Gluing Identity

e Gluing Identity =

e Theorem: We have the identity of cohomology
classes on X:

b(V) - Jp, p,m b(Vp)
= Jp,om b(Vp,) - Jo.p,m b(Vp,).

e For general X, complete classification of solutions
not available.

e Important Fact: the Gluing Identity is functorial;
it V' — X is T-equivariant bundle, there is a T-
equivariant version.
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e Definition: A T-manifold X is called a balloon
manifold if

i. X1 is finite

ii. (GKM) T-weights on T X at fixed point p are
pairwise linearly independent.

iii. The moment map is injective on X I

e Examples: projective toric manifolds, flag mani-
folds.

e For ANY balloon manifold X, the T-equiv. Glu-
ing Identity can be solved completely in terms of
restrictions TX |~ and V|~ where C = Pl are T-
invariant curves i X.

e There is a linear algorithm to compute all equiv-
ariant classes Jp, p,m b(Vp), hence all intersection
numbers K p, in terms of these data.
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e F'xample: X: toric manifold
D1, .., Dy T-invariant divisors
V=&,;L;, c1(L;) > 0and c1(X)=c1(V).
b(V) = e(V)

CI)(T) = > KDedoT.

_gtalLy)d)
B(t)=¢ *tsn ™ 1 el (Ly) ~ k)
— a;d —
H<Da,d><0 Hk:<OD > 1(Da+k) d-t
X <Da,d> e .

1 Dyod)>0 =1 (Da — k)

e Computing generating function ®(t) = = K dedt.
There are explicitly computable functions f(t), g(t),

such that

I oD
Ix (e/B(t) — e e(V)) =20 — zTiﬁTé

where T' =t 4 g(t) (mirror transformation).
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Mirror History

e PHASE I.

e Gepner, Lerche-Vafa-Warner, Dixon (mid 80):
idea of mirror conformal field theories.

e Greene-Plesser, Candelas-Lynker-Schimrigk, Klemm,.
89): mirror CYs in weight projective spaces.

e Candelas-de la Ossa-Green-Parkes (90): use mir-
ror CYs to give enumerative predictions for quintics.

e Libgober-Teiteilboim, Morrison, Batyrev, Klemm
et al, Candelas et al, Berglund et al, Hosono et
al, ...(91-93): enumerative predictions for many ex-
amples of weighted projective complete intersection

CYs.

e Batyrev, Borisov (91-93): mirror CYs in toric
varieties.

e Hosono-Lian-Yau (94): propose genus 0 mirror
formula for general toric CY complete intersections.

e Bershadsky-Cecotti-Ooguri-Vafa (95): higher genus

formula. <



e PHASE II:

e Vafa, Witten, Kontsevich, Ruan-Tian: math. foun-
dation of quantum cohomology and intersection num-
bers.

e Ellingsrud-Stromme, Kontsevich (94): apply di-
rectly Atiyah-Bott to genus-0 Euler class of Cande-
las et al for P4,

e Givental, Bini-de Concini-Polito-Procesi, Pand-
haripande, (96-98): apply Atiyah-Bott and quan-
tum cohomology theory to genus-0 Euler class for
P".

e Lian-Liu-Yau (97): develop functorial localization
to any multiplicative char. classes, and new genus-0
formulas for P".

e Klemm, Katz, Mayr, Vafa,..(97): B-model local

mMIrror symmetry.

e Lian-Liu-Yau (97): math. foundation for A-model
local mirror symmetry.

e PHASE III:
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e Li-Tian, Behrend-Fantachi,... (97): foundation
for virtual fundamental cycles.

e Graber-Pandaripande (97): Virtual localization.

e Li-Tian (98): symplectic and algebraic quantum
cohomology theories are equivalent.

e Lian-Liu-Yau (98-99): apply functorial localiza-
tion to any multiplicative classes for any projective
manifold, at higher genus.

e Lian-C.H.Liu-Yau (99): reconstruct multiplica-
tive classes for hypersurfaces ot general type with-
out mirror formula.

e Most recently: functorial localization of Lian-Liu-
Yau becomes a popular technique. Eg. DBertram,
Lee, ... cf. Gathmann.

g e
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Conjectures

e Let Y be a CY 3-fold. Then the virtual class
LTyo(d,Y) is a zero dimensional cycle. Let K; €
Q be the degree of this cycle, and define the “in-
stanton numbers” ng by the formula

K;j=>ng/.
4= g

e Conjecture 1: the n, are all integers.

e When Y is a toric complete intersection, then the
ng should be divisible by the “multidegrees” of Y.

e ['xample: when Y is the quintic 3-fold, the n are
divisible by 53 (Clemens). Verified by Lian-Yau for
5 [d.

e Near the “large radius limit”, the periods of the
mirror manifold X should be of the form, in local
coordinates

wo=1+0(z), w;=uwplog z;+ O(z),
The mirror map z +— q has power series

n
q; = exp(w—z) = z; + 0(22).
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e Conjecture 2: The expansions of the g; have inte-
eral coefficients.

e This has been verified by Lian-Yau for hypersur-
faces X in toric varieties with H*(X,Z) = Z.

e When X is a toric complete intersections, the se-
ries q,L-l w should also have integer expansion, where

h; are “multidegrees” of Y.

e Fixample: when X is the mirror quintic, h = 5,
this has been observed by Vafa et al.
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