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The text below contains the slides of the talk I have given at CRM on November 10,

2000. A related talk I gave at the Fields Institute on November 4, 2000. I completed

sentences indicated on the slides, added a few explanations of the notation and concepts

presented which I gave orally during the talks and inserted brief literature comments and

a list of references. Apart from this I changed nothing. As a result the paper retains the

informal style of the talk.

My gratitude goes to my collaborators and friends Volker Bach and Juerg Fröhlich, the

joint work with whom is at the heart of this talk, to Volodya Buslaev, Stephen Gustafson,

Peter Hislop, Walter Hunziker, Marco Merkli, Yuri Ovchinnikov, and Avy Soffer, joint

work with whom was touched upon here or influenced my understanding of the questions

presented.

SPECTRAL ANALYSIS

I want to address the problem of perturbation of spectra of operators. For example,

consider the problem of perturbation of a single eigenvalue. There are two possible cases:

# 1 Isolated eigenvalues

x x

EVs Cont Spec
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# 2 Embedded eigenvalues

Cont SpecEVs

x xx

In physical applications the second situation is generic, while the first one arises as a

crude idealization when one considers a small part of a system in question.

Let us consider several examples of the second case.

HOPF BIFURCATION FROM SOLITONS

Consider the nonlinear Schrödinger equation

i
∂ψ

∂t
= −∆ψ + g

(

|ψ|2
)

ψ,

where ψ: R
n × R → C. This equation has soliton solutions

ψsol(x, t) = eiΦ(x,t) f(x− vt)

where Φ(x, t) is some real phase depending on the velocity v. The spectrum of fluctuations

around ψsol, i.e. of the linearization, Lψsol
, of the r.h.s. around ψsol, is

0

rotational modes
translation and

Re z

x

Im z

x

x

oscillatory modes

Do oscilatory modes lead to the bifurcation of time-periodic solutions?

2



0
T T

ϕ

Following the Hopf bifurcation analysis we have to consider the Floquet operator

−T−1 ∂

∂t
+ Lψsol

on L2(Rn × S1) ,

where S1 is the unit circle and T is an unknown period of the bifurcating periodic solution

we are looking for. The spectrum of this operator is

spec(Lψsol
) + iT−1

Z, (∗)

where spec(Lψsol
) is shown on the figure preceding the one above. Spectrum (∗) consists

of a continuum filling in the entire imaginary axis and translation/rotation and oscillatory

eigenvalues repeated periodically and embedded into this continuum.

Thus the answer to the question of what kind of solution bifurcates from oscillatory

modes depends on an understanding of what happens to embedded oscillatory modes under

a nonlinear perturbation.

VORTEX SPECTRUM

Consider the Ginzburg-Landau equation

∆ϕ+ (1 − |ϕ|2)ϕ = 0

ϕ : R
3 → C

with the boundary condition that |ϕ| → 1 as |x⊥| → ∞, where x⊥ = (x1, x2) for x =

(x1, x2, x3). Solutions of this equation can be specified by smooth curves of zeros of ϕ and

a topological degree of ϕ with respect to these curves.
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Nullϕ
deg ϕ

This equation has special–equivariant–solutions called vortices

ϕn = fn(r)e
inθ .

where (r, θ) are cylindrical coordinates. The spectrum of the linearized equation (i.e. of

vortex fluctuations) is

Cont Spec

x

EV (=0) mult 3

x

(The negative eigenvalues are present for |n| > 1 and absent for |n| = 1.)

A detailed analysis of perturbation of the zero embedded eigenvalue is a key to un-

derstanding the dynamics of many (interacting) vortices.

QUANTUM SPECTRUM OF GEODESICS

Consider a space of curves given by their parameterizations, ϕ. Let V (ϕ) be an energy

of a curve ϕ. A quantization of V (ϕ) yields the Schrödinger operator

−∆ϕ + V (ϕ) on L2(S′, dµC) , (∗)

where dµC is a Gaussian measure on the Schwartz space S ′ = S(Rn) and the meaning of

the “Laplacian”, ∆ϕ, acting on functionals of the field ϕ ∈ S ′(Rn) will be alluded at later.

Now, let ϕCP be a critical point of V (ϕ). The question we want to ask is: What are

the quantum corrections to the energy of ϕCP ?

4



Answering this question involves understanding the low energy spectrum of (∗) near

the classical energy V (ϕCP ) which in turn leads to a perturbation of embedded eigenvalues

and the nearby spectrum.

In a special situation ϕCP could be a geodesic or, more generally, a minimal subman-

ifold.

An important example of the situation above is that of quantum vortices. In this case

ϕ: R3 → C and V (ϕ) is of the form

V (ϕ) =

∫

1

2
|∇ϕ|2 + F (ϕ, x) (∗∗)

x)(ϕ,F

ϕ

double-well potential

The (line) vortices arise as critical points of V (ϕ), ϕ : R3 → C, satisfying certain

topological conditions (see above). The latter conditions imply that the null sets of these

critical points are curves which are geodesics in a certain Riemannian metric (see a figure

above).

One can think of the dynamics of vortices as motion of their centers – Null ϕ – with

relatively rigid vortex rigging around them.

Another interesting case is that of functional (∗∗) with x-independent F ≥ 0 and

for ϕ : [0, 1] → Rm. In this case, critical points of V (ϕ) are (modulo parametrization)

geodescics in the Riemannian metric ds2 = F (y) dy2 (Jacobi metric). The latter fact is
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related to Maupertuis principle in Classical Mechanics.

PROBLEM OF RADIATION

I want to present an example of a common physical situation when a small system

(with finite number of degrees of freedom) is coupled to a large system (of infinite number

of degrees of freedom) – the problem of radiation. This problem is reduced to finding the

low energy spectrum of the quantum Hamiltonian for the system of matter and radiation

H(e) =
∑ 1

2mj

p2
j,eA + V (x) +Hrad

on Hmatter ⊗Hrad (Schrödinger equation coupled to quantized Maxwell equations).

SPEC H(0)

cont. spec

embedded  EV’s

The spectrum of the unperturbed (=uncoupled) Hamiltonian H(0) contains eigenvalues

sitting on the top of the thresholds of continuous spectrum. They correspond to bound

states of an atom in a vacuum. Are these bound states stable or unstable (when e 6= 0)?

REFINEMENT OF NOTION OF SPECTRUM

Standard notions of spectral analysis are insufficient for treating perturbation of em-

bedded eigenvalues. We extend the notion of spectrum as follows. Consider a self-adjoint

operator H on a Hilbert space H. Then point and continuous spectra are poles and cuts

of 〈f, (z −H)−1g〉 ∀ f, g ∈ H

6



branch points

cutpoles

Consider the Riemann surface of 〈f, (z−H)−1g〉 for f and g in some dense set D ⊂ H.

In other words we want to continue this analytic function from, say, C
+ across the cut

(continuous spectrum of H) into the second Riemann sheet:

the 2nd Riemann sheet
New complex poles on 

new
cuts

< f, g>(z - A)-1poles of 

We see that non-threshold eigenvalues of H become isolated poles of this analytic

continuation while new complex poles, not seen before, are revealed. Clearly, real poles

coming from embedded eigenvalues and complex poles must be treated on the same footing.

DEFORMATION OF SPECTRA

Now I outline a constructive tool used in the study of the Riemann surface for a given

operator H–the spectral deformation method. It goes as follows. Consider the orbit

H → H(θ) = U(θ)HU(θ)−1

of H under a one-parameter group, U(θ), of unitary operators, s.t. H(θ) has an analytic

continuation in θ into a neighbourhood of θ = 0. The spectrum of such a continuation

looks typically as on the figure below.
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Threshold EV ResonancesNon-thresh EV

> 0θIm 

The resolvent
(

H(θ) − z
)−1

provides the desired information about the Riemannian

surface of the operator H. In particular, the real eigenvalues of H(θ) coincide with the

eigenvalues of H, i.e. with the real poles mentioned above, while the complex eigenvalues

of H(θ) are related to the complex poles on the second Riemann sheet. These complex

eigenvalues are called the resonances of H.

Thus the problem of understanding the behaviour of embedded eigenvalues and the

continuous spectrum of H under a perturbation is reduced to the problem of understanding

the complex spectrum of the operator H(θ) for complex θ’s.

MATHEMATICAL PROBLEM OF RADIATION

The goal here is to construct a mathematical theory of emission and absorption of

electro-magnetic radiation by systems of non-relativistic matter s.a. atoms and molecules:

ground state

photon

excited state

Mathematically, this translates into the problem of understanding the bound state–

resonance structure of the quantum Hamiltonian of a system of quantum matter coupled
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to quantum radiation.

QUANTIZED MAXWELL EQUATIONS

I review quickly a mathematical framework of quantum theory of radiation. First, I

describe the quantized Maxwell equations and then their coupling to quantum matter.

The quantized Maxwell equations can be presented as the Schrödinger equation
∂φ

∂t
=

Hradφ with the quantum Hamiltonian operator

Hrad :=
1

2

∫

: Eop(x)2 +
(

curlAop(x)
)2

: d3x

acting on Hrad = L2(S′, dµC). Here S′ is the Schwartz space of the transverse vector

fields, A(x), divA(x) = 0, on R
3, dµC is the Gaussian measure on S ′ with the mean 0

and covariance C = (−∆)−
1

2 , Aop(x) and Eop(x) are the quantum operators of the vector

potential and electric field in the Couloub gauge,

Aop(x) = operator of multiplication by A(x)

Eop(x) = −i
δ

δ A(x)
+ iC− 1

2A(x) ,

and the double colons signify the Wick, or normal, ordering, i.e. some sort of deformation

of the quantization procedure.

Now we explain briefly an origin of this Hamiltonian.

The Maxwell equations in a vacuum is an infinitely dimensional Hamiltonian system

with the Hamiltonian functional

H(A,E) =
1

2

∫

E2 + (curlA)2

defined on the phase-space Htransv
1 ×Ltransv

2 equipped with a standard symplectic structure.

Here A(x) is the vector potential in the Coulomb gauge and E(x) is the electric field (the

field conjugate to A(x)), which are transverse vector fields on R3 (i.e. divA(x) = 0 and

divE(x) = 0), and Htransv
1 and Ltransv

2 are the Sobolev space of order 1 and L2-space of

transverse vector fields.
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A naive quantization of this dynamical system patterned on the quantization of the

Newton equations goes as follows.

Concept CFT QFT

Phase/state space Htransv
1 ⊗ Ltransv

2 “L2(Htransv
1 , DA)”

Symplectic structure Poisson brackets commutators

Canonic. variables A(x) Aop(x) = operator of

(w.r. to the multiplication by A(x)

symplectic structure) E(x) Eop(x) = −i δ
δA(x)

Observables Real functionals Self-adjoint operators

f(A,E) on A = f(Aop, Eop) on

Htransv
1 ⊗ Ltransv

2 “L2(Htransv
1 , DA)”

Dynamics Ham.fnctnl H(A,E) Ham.opr H(A,E)

The third column does not make sense mathematically, but its natural modification

leads to the formulation presented at the beginning of this section.

MATTER

Quantum non-relativistic matter is described by a Schrödinger operator of the form

(in units: ~ = 1, c = 1, and me = 1)

Hmatter =
N

∑

1

1

2mj

p2
j + V (x)

on Hmatter(e.g. L2(R3N )). Here pj = −i∇xj
, mj > 0 ∀j and x = (x1, . . . , xN ).

SPECTRUM OF Hmatter

Typically, the spectrum of Hmatter is of the form (Hunziker-van Winter-Zhislin The-

orem)

bound states

excited statesground state Σ continuous
spectrum

scattering states
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MATTER + RADIATION

To introduce the coupling between matter and radiation, we think about the vector

potential A(x) as a quantum connection on R3 and pass to the covariant derivatives

p→ pA = p− eA(x) .

This leads to the Hamiltonian for the system of matter and radiation

H(e) =
∑ 1

2mj

p2
j,A + V (x) +Hrad

on Hmatter ⊗Hrad. This operator is not well defined. To remedy this we introduce

Ultraviolet cut-off: A(x) → χ ∗A(x),

∫

|χ|2d3k <∞

in the interaction terms p2
j,A. The resulting operator (which we still denote by the same

symbol H(e)) is self-adjoint and is bounded from below.

MATHEMATICAL PROBLEM

Problem of Radiation: Fate of the bounded states of matter

(

ϕj ⊗ Ω
)

e−iEj t , ∀j
↗ ↖

(∗)

bound state of matter vacuum of
with energy Ej quantized EM field

as charges are “turned on”.

)bound states ( *

Spec H(0)

E.g. one would like to show that an atom in an excited state in a vacuum is unstable, that

it emits a photon and descends into the stable ground state.
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RENORMALIZATION GROUP APPROACH

Assume we want to study a part of the spectrum of the operator H(e) near E0. We

proceed as follows:

• Pass to a metric space M of operators

• Construct a flow Φτ on M s.t.

- Φτ eliminates “inessential” degrees of freedom

- Φτ is isospectral in |z −E0| ≤ e−τ

• Find fixed points of Φτ and their stability.

X

M

X

Observe now that

- Isospectrality of Φτ allows us to transfer the spectral information we have about fixed

points to the initial operator H(e);

- Classify possible behaviour of physical systems in question according to the fixed

points to which they are attracted.

Since φτ eliminates “inessential” degrees of freedom (a kind of partial dissipation) we

expect that the Hamiltonians Hτ := φτ (H) at levels τ simplify as τ → ∞ and in particular

that the fixed points are especially simple.

DECIMATION MAP

In order to define the RG-flow we first define a map, called the decimation map, which

eliminates inessential degrees of freedom. First, we observe that the map

H → PτHPτ ,

where Pτ is the spectral projector associated with the inequality |H(0) − E0| ≤ e−τ ,

eliminates the part of H acting on (RanPτ )
⊥ but it distorts Spec H. We modify this map

in order to restore the spectral fidelity in a small neighbourhood of z = 0:

Dτ : H → Pτ (H −HR⊥H)Pτ ,

where R⊥ = P⊥
τ (P⊥

τ HP
⊥
τ )−1P⊥

τ and P⊥
τ = 1−Pτ . This new map is called the decimation

map.
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Trade-off: Dτ is isospectral at z = 0, but is non-linear.

RESCALING

Next, we introduce the rescaling map Sτ acting on operators by a unitary conjugation,

Sτ : H → UτHU
−1
τ , which rescales the photon momenta as k → e−τk. As a result we have

Sτ : |H(0) −E0| ≤ e−τ → |H(0) − E0| ≤ 1 .

RG - FLOW

Now we are ready to define the RG-flow:

Φτ = Eτ ◦ Sτ ◦Dτ ,

where Eτ (A) = eτA, a normalization map.

Observe that Φτ has the following properties

- Φτ is a semi-flow

- Φτ projects out |H(0) − E0| ≥ e−τ and magnifies the result

- Φτ is isospectral in {z ∈ C||z| ≤ e−τ} modulo the factor eτ .

RG FLOW DIAGRAM

The figure below shows fixed point, stable, and unstable manifolds of Φτ . The point

here is that the fixed point manifold is very simple: Mfp = C · Hrad, while the stable

manifold, Ms, has the codimension 2. Hence given an operator H there is a complex

number E = E(H), s.t. H − E ∈Ms.

= (unstable manifold)

H-E

(manifold of fixed points)

(stable manifold)

fp
M C

M u

M s

=

idC

radH

Now proceed as follows. Apply the RG-flow to H −E. Then Φτ (H −E) converges to the

fixed point manifold so that for τ sufficiently large

Φτ (H −E) ≈ wHrad for some w ∈ C
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and as a result H is isospectral to wHrad − E in {|z − E| ≤ e−τ}. This way we transfer

the spectral information about Hrad, which is available to us, to the operator H.

MATHEMATICAL RESULTS (Bach-Fröhlich-IMS)

Assume that |e| is sufficiently small and, in the third statement below, that the particle

potential, V (x), is confining, i.e. V (x) → ∞ as |x| → ∞. Then we have

I. Binding. H(e) has a ground state ψ. ‖eα|x|ψ‖ <∞ α > 0.

II. Instability. H(e) has no EVs near the excited EVs of Hmatter.

stable ground states of H
unstable excited states of H

X

matter

 H(e)ground state of 

matter

III. Resonances. The excited states of Hmatter bifurcate into resonances of H(e).

X
}

X

1/Life-timeshift
Lamb 

}

X

Projection of Riemann surface of H(e) onto C

(EV stands for “eigenvalue”.)

REMARKS

The result on the vortex spectrum mentioned is equivalent to the property of (lin-

earized) stability/instability of vortices (see [Gus, GS, LL, M, OS1]). Recent results on

dynamics of vortices are reviewed in [OS2].

The spectrum of critical points of the potential in Quantum Mechanics was found

[Sim, BCD, Sj].
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One can also try to understand spectra of critical points of the action functional

S(φ) =

∫
(

∫

1

2
|φ̇|2 dx− V (φ)

)

dt

which are periodic in time.

The method of spectral deformation and the theory of resonances based on it were

proposed by Aguilar, Balslev, Combes and Simon and extended in works of Balslev, Hun-

ziker, Jensen, Sigal, Simon and others. See [HisSig, HunSig] for recent reviews. A different

approach was proposed by Helffer and Sjöstrand (see [HeSj, HeM]).

For a text on rigorous quantum field theory see [GJ] and for a physical discussion of

the problem of radiation, [C-TD-RG].

A recent review of the quantum theory of many particle systems can be found in

[HunSig].

The renormalization group approach and the results on the radiation problem pre-

sented here were obtained in [BFS1-3], where the reader can find many references to the

earlier or simultaneous work (see work [HuSp] for a review of this and related work). Some

improvements of these results are given in [BFS4]. The result on the ground state was

improved in [AH1, AH2, G, GLL, H, Hirosh, Sp]. Further important progress involving

scattering theory was made in [DG, FGS].
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