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ABSTRACT

In the context of multivariate linear regression (MLR) models, it is well known that commonly
employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we
propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coef-
ficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional
invariance results concerning several standard test criteria. These include Wilks’ likelihood ratio
(LR) criterion as well as trace and maximum root criteria. The normality assumption is not nec-
essary for most of the results to hold. Implications for inference are two-fold. First, invariance
to nuisance parameters entails that the technique ofMonte Carlo testscan be applied on all these
statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the
latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of
the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds
analytically, they can easily be simulated, hence yieldingexact bounds Monte Carlo tests. Illustra-
tive simulation experiments show that the bounds are sufficiently tight to provide conclusive results
with a high probability. Our findings illustrate the value of the bounds as a tool to be used in con-
junction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which
may be applied when the bounds are not conclusive.

Key words: multivariate linear regression; seemingly unrelated regressions; uniform linear hypoth-
esis; Monte Carlo test; bounds test; nonlinear hypothesis; finite sample test; exact test; bootstrap.

Journal of Economic Literature classification: C3; C12; C33; C15 O4; O5.

i



RÉSUMÉ

Dans le contexte des modèles de ŕegression multivariés (MLR), il est bien connu que les tests
asymptotiques usuels tendent rejeter trop souvent les hypothèses consid́eŕees. Dans cet article, nous
proposons une ḿethode ǵeńerale qui permet de construire des tests exacts pour des hypothèses pos-
siblement non lińeaires sur les coefficients de tels modèles. Pour le cas des hypothèses uniformes
linéaires, nous présentons des résultats sur la distribution exacte de plusieurs statistiques de test
usuelles. Ces dernières incluent le crit̀ere du quotient de vraisemblance (Wilks), de même que les
critères de la trace et de la racine maximale. L’hypothèse de normalité des erreurs n’est pas requise
pour la plupart des résultats pŕesent́es. Ceux-ci ont deux types de conséquences pour l’inf́erence
statistique. Premièrement, l’invariance par rapport aux paramètres de nuisance signifie que l’on
peut appliquer la technique destests de Monte Carloafin de construire des tests exacts pour les
hypoth̀eses uniformes lińeaires. Deuxìemement, nous montrons comment exploiter cette propriét́e
afin d’obtenir des bornes sans paramètres de nuisance sur la distribution des statistiques de quotient
de vraisemblance pour des hypothèses ǵeńerales. M̂eme si les bornes ne sont pas facilesà calculer
par des moyens analytiques, on peut les simuler aisément et ainsi effectuer des tests de Monte Carlo
à bornes. Nous présentons une expérience de simulation qui montre que ces bornes sont suffisam-
ment serŕees pour fournir des résultats concluants avec une forte probabilité. Nos ŕesultats d́emontre
la valeur de ces bornes comme instrumentà utiliser conjointement avec des méthodes d’inf́erence
simuĺee plus traditionnelles (telles que le bootstrap paramétrique) que l’on peut appliquer lorsque
le testà borne n’est pas concluant.

Mots clés:mod̀ele de ŕegression multivarié; ŕegressions empilées; hypoth̀ese lińeaire uniforme; test
de Monte Carlo; test̀a borne; hypoth̀ese non lińeaire; test̀a distance finie; test exact; bootstrap.
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1 Introduction

Testing the validity of restrictions on the coefficients of a multivariate linear regression (MLR)
model is a common issue which arises in statistics and econometrics. A serious problem with the
MLR model is the fact that, except for very special cases, the distributions of standard test criteria
are either intractable or unknown, because of the presence of nuisance parameters. In general, only
asymptotic approximations are operational. These however may be highly unreliable, especially
in systems with large numbers of equations. In view of this, the development of finite-sample
procedures appears to be particularly important.

Exact results are available in the literature only for specific test problems. Early references can
be found in connection with multivariate analysis of variance (MANOVA). These include the like-
lihood ratio criterion [ Wilks (1932), Bartlett (1947)], the Lawley-Hotelling trace criterion [Lawley
(1938), Bartlett (1939), Hotelling (1947, 1951)], the Bartlett-Nanda-Pillai trace criterion [Bartlett
(1939), Nanda (1950), Pillai (1955)] and the maximum root criterion [Roy (1953)]. The literature
concerning the moments, Laplace transforms and exact densities of these statistics is vast; see, for
example, Rao (1973, Chapter 8), Anderson (1984, chapters 8 and 13) and Kariya (1985). How-
ever, most of the existing exact results in this area are limited to a very specific class of hypotheses,
namely theuniform mixed linear(UL) class [see Berndt and Savin (1977)]. Examples of UL hy-
potheses include: (i) the case where identical transformations of the regression coefficients (within
or across equations) are set to given values, and (ii) the hypothesis that a single parameter equals
zero. For some recent exact results on tests of UL hypotheses, see Stewart (1997). Note however
not all linear hypotheses can be put in UL form. Further, except for even more restricted classes of
UL hypotheses (for which tables are available), the existing results on general UL hypotheses are
difficult to exploit and approximate distributions are usually suggested.

Thus far less restrictive testing problems have not apparently been considered from a finite sam-
ple perspective, with perhaps the exception of Hashimoto and Ohtani’s (1990) exact test for general
linear restrictions. This procedure is similar to Jayatissa’s (1977) test for equality of regression
coefficients in two linear regressions with unequal error variances. However, the authors recog-
nize that, similarly with Jayatissa’s procedure, this test involves complicated computations and has
low power. Further, the test relies on a non-unique transformation of the OLS residuals. These
observations suggest that this test has limited practical interest.

Asymptotic Wald, Lagrange multiplier and likelihood ratio tests are available and commonly
employed in econometric applications of the MLR model; see Berndt and Savin (1977), Evans
and Savin (1982), Breusch (1979), Gouriéroux, Monfort and Renault (1993, 1995) and Stewart
(1995, 1997). It has been shown, however, that in finite samples, these asymptotic criteria are
seriously biased towards overrejection when the number of equations relative to the sample size
is large (even moderately). Well known examples include Laitinen (1978), Meisner (1979), Bera,
Byron and Jarque (1981) and Theil and Fiebig (1985) on testing homogeneity and symmetry in
demand systems. Further evidence for the case of multivariate tests in capital asset pricing models
(CAPM) is also available; see Stambaugh (1982), Jobson and Korkie (1982), Amsler and Schmidt
(1985) and MacKinlay (1987). These and other references are discussed by Stewart (1997).

It is clear that standard asymptotic approximations are quite unsatisfactory in this context. At-
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tempts to improve these include, in particular: (i) Bartlett-type corrections, and (ii) bootstrap meth-
ods. Bartlett corrections involve rescaling the test statistic by a suitable constant obtained such
that the mean of the scaled statistic equals that of the approximating distribution to a given order
[Bartlett (1937), Lawley (1956), Rothenberg (1984), Barndorff-Nielsen and Blaesild (1986)]. For-
mulae explicitly directed towards systems of equations are given in Attfield (1995). Overall, the
correction factors require cumulants and joint cumulants of first and second order derivatives of
the log-likelihood function, and, outside a small class of problems, are complicated to implement.
Furthermore, simulation studies [e.g., Ohtani and Toyoda (1985), Frydenberg and Jensen (1989),
Hollas (1991), Rocke (1989), Wong (1989, 1991) and Gonzalo and Pitarakis (1994)] suggest that in
many instances Bartlett adjustments do not work well. A simpler correction factor is proposed by
Italianer (1985), but the procedure is rather heuristic and has little theoretical background.

The use of bootstrap methods for MLR models has been discussed by several authors,e.g.
Williams (1986), Rocke (1989), Rayner (1990a, 1990b), Eakin, McMillen and Buono (1990),
Affleck-Graves and McDonald (1990), Martin (1990), Atkinson and Wilson (1992), and Rilstone
and Veall (1996). Although long recognized as a useful alternative to standard asymptotic meth-
ods, the bootstrap only has an asymptotic justification when the null distribution of the test statistic
involves nuisance parameters, hence the finite sample properties of bootstrap tests remain to be es-
tablished. For general discussion of bootstrap methods, the reader may consult Hall (1992), Efron
and Tibshirani (1993) and Shao and Tu (1995); on econometric applications, see Jeong and Mad-
dala (1993), Vinod (1993) and Davidson and MacKinnon (1999a, 1999b, 1999c). In a different vein,
randomized tests have been suggested in the MLR literature for a number of special test problems
and are referred to under the name ofMonte Carlo tests; see Theil, Shonkwiler and Taylor (1985),
Theil, Taylor and Shonkwiler (1986), Taylor, Shonkwiler and Theil (1986) and Theil and Fiebig
(1985). However, these authors do not supply a distributional theory, either exact or asymptotic.

Further results relevant to MLR-based test problems may also be found in the econometric lit-
erature on seemingly unrelated regressions (SURE) and simultaneous equations. Indeed, the MLR
model can be interpreted as a SURE model with identical regressors across equations. Alterna-
tively, the SURE model may be nested within an MLR framework, imposing exclusion constraints.
Hypotheses maintaining the SURE exclusion restrictions are clearly not compatible with the UL
format, which precludes the application of existing exact procedures. With regards to simultane-
ous equations, recall that an unrestricted reduced form is an MLR model. In this context, given
the relationship between the structural and reduced-form parameters, one usually meets non-linear
hypotheses. Since hardly any practical exact procedure appears to be available for the nonlinear
case, testing procedures in simultaneous equations remain for the most part asymptotic. In fact,
the existing literature on exact tests in both SURE and simultaneous equations models [see, for
example, Dufour and Khalaf (1998a, 1998b), and Dufour (1997)] is very limited. Furthermore,
simulation evidence (reported in the latter references) indicates that the asymptotic tests may have
serious shortcomings in such models, and standard size correction techniques are not appropriate.

In this paper, we propose a general exact method for testing arbitrary - possibly non-linear -
hypotheses on the coefficients of a standard MLR. We first prove a number of finite sample results
dealing with the UL case. While the normality assumption underlies the motivation for the statistics
we consider, this is not necessary for most of the results obtained. More precisely, an important
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feature of the MLR model is the fact that several test criteria derived under the Gaussian assumption
[including the likelihood ratio (LR), the Lawley-Hotelling and Bartlett-Nanda-Pillai trace criteria,
and Roy’s maximum root criterion] are all functions of the eigenvalues of a characteristic deter-
minantal equation which involves the restricted and unrestricted residual sum-of-squares matrices.
Further, for UL hypotheses, we show these eigenvalues have a distribution that does not depend on
nuisance parameters under the null hypothesis, as soon as the error distribution is parametrically
specified up to an unknown linear transformation (or covariance matrix, when second moments ex-
ist). This invariance property does not appear to have been pointed out in the earlier literature on
inference in the MLR model, especially for non-Gaussian settings.

Second, even though the entailed (nuisance-parameter-free) null distributions of the test statis-
tics are typically non-standard, we observe that finite-sample (randomized) tests of UL hypotheses
may then easily be obtained by applying the technique of Monte Carlo (MC) tests [originally pro-
posed by Dwass (1957) and Barnard (1963)] to the test statistics considered]. MC tests may be
interpreted as parametric bootstrap tests applied to statistics whose null distribution does not in-
volve nuisance parameters, with however the central additional observation that the randomized test
procedure so obtained can easily be performed in such a way that the test exactly has the desired size
(for a given, possibly small number of MC simulations); for further discussion, see Jöckel (1986),
Hall (1992), Dufour (1995), Dufour and Kiviet (1996, 1998), Kiviet and Dufour (1997), and Dufour,
Farhat, Gardiol and Khalaf (1998).

Thirdly, for the problem of testing general possibly nonlinear hypotheses, we use the above
invariance results to construct nuisance-parameter-free bounds on the null distribution of the LR
criterion. A very remarkable feature of these bounds is the fact that they holdwithout imposing any
regularity conditionon the form of the null hypothesis, something even the most general asymptotic
theories do not typically achieve. The bounds proposed are motivated by the propositions in Dufour
(1997) relating to likelihood based inference in MLR settings: using an argument similar to the one
in Dufour (1989) for a univariate regression, we show that LR statistics have null distributions which
are boundedly pivotal,i.e. they admit nuisance-parameter-free bounds. Here we extend this result,
e.g. by allowing for non-Gaussian models, and outline a general procedure to construct typically
tighter bounds. Note however that the bound implicit in Dufour (1997)’s demonstrations may be
obtained as a special - although non-optimal - case of the bounds presented here.

To be more specific, the bounds test procedure for general restrictions can be described as fol-
lows. First, we introduce a UL hypothesis which is a special case of the restrictions to be tested.
Then we argue that the LR criterion associated with the suggested UL hypothesis provides the de-
sired bound. The result follows from two considerations. First, since the UL constraints in question
were constructed as a special case of the tested hypothesis, it is evident that the LR statistic for the
UL hypothesis (UL-LR) is larger than the LR test statistic of interest, and thus the UL-LR distribu-
tion yields an upper bound (and conservative critical points) applicable to the LR statistic. Second,
the pivotal property which characterizes the UL-LR statistic (established in our paper) guarantees
invariance with respect to nuisance parameters. The null distributions so obtained associated are
non-standard, so it may be difficult to compute analytically the corresponding conservativep-values.
However, the bounding UL-LR statistics can be easily simulated, hence yieldingexact bounds MC
tests.
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We conduct a simulation experiment to assess the performance of the bound. We find that
the bounds are sufficiently tight to yield conclusive results with a high probability. These findings
illustrate the value of the bounds test as a tool to be used in conjunction (possibly) with more
traditional methods (e.g., the parametric bootstrap) and not necessarily as an alternative to these
methods. Finally, we refer the reader to Dufour and Khalaf (1998a, 1998b) for extensions to the
SURE and simultaneous equations models.

The paper is organized as follows. Section 2 describes the notation and definitions. Section 3
discusses the distributional results pertaining to uniform linear hypotheses. Section 4 discusses the
testing of general hypotheses in the MLR model and establishes bounds on the significance points
for these statistics. Simulation results are reported in Section 5, and Section 6 concludes.

2 Framework

The MLR model can be expressed as follows:

Y = XB + U (2.1)

whereY = [Y1, ... , Yp] is ann × p matrix of observations onp dependent variables,X is an
n×K full-column rank matrix of fixed regressors,B = [b1, . . . , bp] is aK×p matrix of unknown
coefficients, andU = [U1, . . . , Up] = [Ũ1, . . . , Ũn]′ is ann× p matrix of random disturbances.
For further reference, letbj = (b0j , b1j . . . , bsj)′, j = 1, . . . , p, wheres = K − 1. We also
assume that the rows̃U ′

i , i = 1, . . . , n, of U satisfy the following distributional assumption:

Ũi = JWi , i = 1, . . . , n , (2.2)

where the vectorw = vec(W1, . . . , Wn) has a known distribution andJ is an unknown, non-
singular matrix. In this context, the covariance matrix ofŨi isΣ = JJ ′, wheredet (Σ) 6= 0. For
further reference, letW = [W1, . . . , Wn]′ = U

(
J−1

)′
. In particular, assumption (2.2) is satisfied

when
Wi

i.i.d.∼ N(0, Ip) , i = 1, . . . , n . (2.3)

An alternative representation of the model is

y = (Ip ⊗X)b + u (2.4)

wherey = vec(Y ), b = vec(B), andu = vec(U). The least squares estimate ofB is

B̂ = (X ′X)−1X ′Y (2.5)

and the corresponding residual matrix is

Û = Y −XB̂ = MY = MU (2.6)
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whereM = I − X(X ′X)−1X ′. In this model, it is well known that under (2.3) the maximum
likelihood estimators (MLE) of the parameters reduce toB̂ andΣ̂ = Û ′Û/n. Thus the maximum
of the log-likelihood function (MLF) over the unrestricted parameter space is

max
B,Σ

ln(L) = − np

2
ln(2π) − n

2
ln(|Σ̂|) − np

2
. (2.7)

3 Uniform linear hypotheses in the multivariate linear model

In this section, we establish an exact finite-sample distributional invariance result for several usual
test statistics in the MLR model (2.1). This result obtains on assuming Gaussian or non-Gaussian
errors, provided the latter have a distribution which is specified up to the unknown matrixJ . Specif-
ically, we show that, for a wide class of linear hypotheses, the null distributions of the test statistics
are free of nuisance parameters.

The fundamental invariance property applies to the case where the constraints take the special
UL form

H0 : RBC = D (3.1)

whereR is a knownr ×K matrix of rankr ≤K, C is a knownp× c matrix of rankc ≤ p, andD
is a knownr × c matrix. We will first study the problem of testing

H01 : Rβj = δj , j = 1, . . . , p , (3.2)

which corresponds toC = Ip. In this context, the most commonly used criteria are: the LR criterion
[Wilks (1932), Bartlett (1947)], the Lawley-Hotelling (LH) trace criterion [Lawley (1938), Bartlett
(1939), Hotelling (1947, 1951)], the Bartlett-Nanda-Pillai (BNP) trace criterion [Bartlett (1939),
Nanda (1950), Pillai (1955)], and the maximum Root (MR) criterion [Roy (1953)].1 All these test
criteria are functions of the rootsm1, m2, . . . , mp of the equation

|Û ′Û −mÛ ′
0Û0| = 0 (3.3)

whereÛ ′
0Û0 and Û ′Û are respectively the constrained and unconstrained sum of squared errors

(SSE) matrices. For convenience, the roots are reordered so thatm1 ≥ . . . ≥ mp. In particular, we
have:

LR = −n ln(L) , L = |Û ′Û |/|Û ′
0Û0| =

p∏

i=1

mi (3.4)

whereL is the well known Wilks statistic, and

LH =
p∑

i=1

(1−mi)/mi ,

1Note that the criteriaLH andBNP can be interpreted as Wald and Lagrange multiplier test statistics, respectively.
For details of the relationship, see Berndt and Savin (1977), Breusch (1979) or Stewart (1995).
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BNP =
p∑

i=1

(1−mi) ,

MR = max
1≤i≤p

(1−mi)/mi .

Now consider the following decomposition of the SSE matrixÛ ′Û :

Û ′Û = U ′MU = J
[
U

(
J−1

)′]′
M

[
U

(
J−1

)′]
J ′

= JW ′MWJ ′ (3.5)

where the matrixW = U(J−1)′ defined by (2.2) has a distribution that does not involve nuisance
parameters. In other words,̂U ′Û depends onΣ only throughJ . Similarly, Û ′

0Û0 can be expressed
as

Û ′
0Û0 = JW ′M0WJ ′ (3.6)

whereM0 = M − X(X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1X ′. These observations yield the
following basic distributional result.

Theorem 3.1 DISTRIBUTION OF DETERMINANTAL ROOTS. Under (2.1), (2.2) and H01, the
vector(m1, m2, . . . , mp)′ of the roots of(3.3) is distributed like the vector of the corresponding
roots of ∣∣W ′M W −mW ′M0W

∣∣ = 0 (3.7)

whereM is defined as in(2.6), M0 as in(3.6), W = U
(
J−1

)′
and the roots are put in descending

order in both cases.

PROOF: From (3.5) and (3.6), we have:

Û ′Û = JW ′MWJ ′ ,
Û ′

0Û0 = JW ′M0WJ ′ .

Consequently, the determinantal equation (3.3) can be expressed as

∣∣JW ′MWJ ′ −mJW ′M0WJ ′
∣∣ = 0 ,

hence
|J | ∣∣W ′MW −mW ′M0W

∣∣ ∣∣J ′∣∣ = 0

and ∣∣W ′M W −m W ′M0 W
∣∣ = 0 .

Since the vectorw = vec(W1 , ... , WN ) has a completely specified distribution, the roots of
equation (3.7) have distributions which does not involveany unknown parameter. Q.E.D.

The above result entails that the joint distribution of(m1, . . . , mp)′ does not depend on nui-
sance parameters. Hence the test criteria obtained as functions of the roots are pivotal under the
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null and have a completely specified distribution under assumption (2.2). Further, this distribution
depends on theR matrix but not on the constantsδj , j = 1, . . . , p, in (3.2). On the basis of this
theorem, the distribution of the Wilks’L criterion can be readily established.

Corollary 3.2 DISTRIBUTION OF WILKS ’ STATISTIC. Under the assumptions of Theo-
rem 3.1, Wilks’ L statistic for testingH01 is distributed like the product of the roots of
|W ′MW −mW ′M0W | = 0.

It may be useful, for simulation purposes, to restate Corollary3.2as follows.

Corollary 3.3 DISTRIBUTION OF WILKS ’ STATISTIC AS RATIO. Under the assumptions of The-
orem3.1, Wilks’L statistic for testingH01 is distributed like|W ′MW | / |W ′M0W | .

We now turn to the general UL hypothesis (3.1). In this case, the model may be reparametrized
as follows:

Yc = XBc + Uc (3.8)

whereYc = Y C, Bc = BC and Uc = UC with covarianceC ′ΣC. The corresponding null
hypothesis takes the formRBc = D. The proof then proceeds as for Theorem3.1. We emphasize
again that the above results do not require the normality assumption.

Eventually, when the normality hypothesis (2.3) holds, the distribution of the Wilks criterion is
well known and involves the product ofp independentbetavariables with degrees of freedom that
depend on the sample size, the number of restrictions and the number of parameters involved in these
restrictions. The reader may consult Anderson (1984) and Rao (1973). For completeness sake, we
restate this result in Appendix A. Note that Theorem3.1 is not explicitly stated by Anderson (1984)
or Rao (1973), although it can be derived by looking at their demonstrations.2

For non-Gaussian errors [i.e. whenWi follows a known distribution which differs from the
N(0, Ip) distribution], the null distribution of Wilks’ statistic may not be analytically tractable.
However, the above invariance results can be used to obtain Monte Carlo tests that are applicable
given the distributional assumption (2.2). Such procedures were originally suggested by Dwass
(1957) and Barnard (1963). In Appendix B, we briefly outline the methodology involved as it
applies to the present context; for a more detailed discussion, see Dufour (1995), Dufour and Kiviet
(1996, 1998), Kiviet and Dufour (1997), and Dufour et al. (1998).

To conclude, observe that even in the Gaussian case, it may be more convenient to obtain critical
points by simulation. Indeed, it is clear that the null distribution as characterized by Anderson or
Rao is not so suitable, in general, for analytical computations (except for specific cases reviewed in
Appendix A). Finally, recall that not all linear hypotheses can be expressed as inH0; we discuss
other types of hypotheses in the following section.

2The distributions derived in Anderson (1984) and Rao (1973) establish the pivotal characateristic of Wilks’ criterion
in Gaussian contexts.
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4 General hypotheses in the multivariate linear model

In this section, we study the problem of testing general hypotheses on the coefficients of the MLR
model. Exact bounds on the null distributions of the LR statistic are derived, which extend the
results in Dufour (1989) to the multi-equation context. The bounds are based on the distributional
results of the previous section and can be easily simulated. Formally, in the context of (2.4) consider
the general hypothesis

H∗
0 : R∗b ∈ ∆0 (4.1)

whereR∗ is aq∗ × (pK) matrix of rankq∗, and∆0 is a non-empty subset ofRq∗. This characteri-
zation of the hypothesis includes cross-equation linear restrictions and allows for nonlinear as well
as inequality constraints. The relevant LR statistic is:

LR∗ = n ln(Λ∗) , Λ∗ = |Σ̂∗0|/|Σ̂| (4.2)

whereΣ̂∗0 andΣ̂ are the MLE ofΣ imposing and ignoringH∗
0 . In general, the null distribution of

LR∗ depends on nuisance parameters [see Breusch (1980) in connection with the general linear
case]. Here we show thatLR∗ is a boundedly pivotal statistic under the null hypothesis,i.e. its
distribution can be bounded in a non-trivial way by a nuisance-parameter-free function. To do
this, we shall extend the methodology proposed in Dufour (1989) in the context of single equation
linear models. Furthermore, we exploit the invariance result which we established above in the
UL hypothesis case. The method of proof we present next is likelihood based, in the sense that
we explicitly use the Gaussian log-likelihood function. However, as will become clear from our
analysis, it is trivial to rewrite proofs and results in the Least Squares framework.

Consider the MLR model (2.4) and letL(HU ) denote the unrestricted MLF. In the Gaussian
model,L(HU ) is expressed by (2.7). Further, suppose we can find another set of UL restrictions
H∗∗

0 : R̃BC = D such thatH∗∗
0 ⊂ H∗

0 . Now defineL(H∗
0 ), L(H∗∗

0 ) to be the MLF underH∗
0 and

H∗∗
0 respectively. Under assumption (2.3),

L(H∗
0 ) = − np

2
ln(2π) − n

2
ln(|Σ̂∗0|) −

np

2
, (4.3)

L(H∗∗
0 ) = − np

2
ln(2π) − n

2
ln(|Σ̂∗∗0 |) −

np

2
, (4.4)

whereΣ̂∗∗0 is the MLE underH∗∗
0 . Then it is straightforward to see that

L(H∗∗
0 ) ≤ L(H∗

0 ) ≤ L(HU ) . (4.5)

Using (4.3), (4.4) and (4.5), we see that
Λ∗ ≤ Λ∗∗ (4.6)

where
Λ∗∗ = |Σ̂∗∗0 |/|Σ̂| . (4.7)

It follows thatP [Λ∗ ≥ x] ≤ P [Λ∗∗ ≥ x], ∀x, whereP [Λ∗∗ ≥ x], as demonstrated in Section 3, is
nuisance-parameter free and may be used to obtain exact procedures in finite samples on applying
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Monte Carlo test methods (see Appendix B).
At this point, it is worth noting that normality [hypothesis (2.3)] by no way constitutes a nec-

essary assumption in this case. Indeed, inequality (4.6) follows from the properties of least squares
estimation irrespective of the true density function. Furthermore, the critical values of the bound-
ing statistic may still be determined using the MC test method under the general assumption (2.2).
For further reference, we call the MC test based on the conservative bound abounds Monte Carlo
(BMC) test. We now state our main result for model (2.4) given the distributional assumption (2.2).

Theorem 4.1 BOUNDS FOR GENERALLR STATISTICS. Consider the MLR model(2.4) with
(2.2). Let Λ∗ be the statistic defined by(4.2) for testingR∗b ∈ ∆0, whereR∗ is a q∗ × (pK)
full column rank matrix and∆0 is a non-empty subset ofRq∗ . Further, consider restrictions of the
form R̃BC = D that satisfyR∗b ∈ ∆0, whereR̃ andC are r ×K andp × c matrices such that
r = rank(R̃) and c = rank(C). Let Λ∗∗ be the inverse of Wilks criterion for testing the latter
restrictions. Then under the null hypothesis,P [Λ∗ ≥ λ∗∗(α)] ≤ α, for all 0 ≤ α ≤ 1 , where
λ∗∗(α) is determined such thatP [Λ∗∗ ≥ λ∗∗(α)] = α.

For completeness, we proceed next to state our main conclusion for the Gaussian model. Let
Ψα (·) be such that

P [Ψ(v1,v2, v3) ≥ Ψα(v1, v2, v3)] = α , 0 ≤ α ≤ 1 , (4.8)

whereΨ(v1, v2, v3) is distributed like the product of the inverse ofv2 independentbetavariables
with parameters(1

2(v1 − v2 + i), v3
2 ), i = 1, . . . , v2. Then, we can prove the following theorem.

Theorem 4.2 BOUNDS FOR GENERALLR STATISTICS: GAUSSIAN MODEL. Consider the MLR
model(2.4) with (2.2) and(2.3). LetΛ∗ be the statistic defined by(4.2) for testingR∗b ∈ ∆0, where
R∗ is a q∗ × pK with rankq∗ and∆0 is a non-empty subset ofRq∗. Further, consider restrictions
of the formR̃BC = D that satisfyR∗b ∈ ∆0, whereR̃ and C are r × K and p × c matrices
such thatr = rank(R̃) and c = rank(C). Then, under the null hypothesis, for all0 ≤ α ≤ 1,
P [Λ∗ ≥ Ψα(n−K, p, q̃)] ≤ α , whereq̃ = min(r, c) andΨα (·) is defined by(4.8).

Indeed, under (2.3),Λ∗∗ is distributed likeΨ(n −K, p, q̃); see Appendix A. Using (4.6) and
(4.8), we have

P [Λ∗ ≥ Ψα(n−K, p, q̃)] ≤ α , 0 ≤ α ≤ 1 . (4.9)

Consequently, the critical valueQα defined by

Qα = Ψα(n−K, p, q̃) (4.10)

is conservative at levelα. Of course, one should seek the smallest critical bound possible. This
would mean expressing̃R so thatq̃ is as small as possible.

Clearly, the above results hold when the hypothesis is linear of the formR∗b = δ0. It is worth
mentioning at this stage that exact bounds have been proposed in the literature for a specific test
problem, namely testing the efficiency hypothesis in the Capital Asset Pricing model (CAPM) con-

9



texts; see Stewart (1997) and Shanken (1986). Dufour and Khalaf (1998a) reconsider this example
from the finance literature and show that both bounds obtain as a special case of Theorem4.2.

To conclude, note that Theorems4.1and4.2have further implications on LR-based hypothesis
tests. The fact that the null distribution of the LR statistic can be bounded (in a non trivial way)
implies that alternative simulation-based test techniques may be used to obtain validp-values based
on the statistic in (4.2). See Dufour (1997) for further discussion of the boundedly-pivotal test
property and its implications on the potential usefulness of standard size correction techniques.

Eventually, when the BMCp-value is not conclusive, alternative MC and/or bootstrap type
methods may be considered. However, we emphasize the fact that the BMC procedure can be im-
plemented in complementarity with such methods. Indeed, if the BMCp-value is less than or equal
thanα, then it follows from Theorem4.1 that the exactp-value will most certainly reject the null
at levelα. Our point is that the bounds are very easy to simulate, since they are based on UL-LR
criteria; to see this, refer to Corollaries3.2 - 3.3. In contrast, alternative simulation based size cor-
rections procedures including the bootstrap require realizations of the test statistic at hand. It is well
known that general-restrictions-LR criteria typically require numerical iterative procedures (even
under certain non-UL linear constraints). In view of this, it is advantageous to construct a BMC
p-value first, to avoid costly constrained maximizations and the associated numerical problems.

5 Simulation study

This section reports an investigation, by simulation, of the performance of the various proposed
statistics under UL constraints as well as more general contexts.

5.1 Design

We considered the following designs.
D1. MLR system, within-equation UL constraints

Model: (2.1) withK = p + 1;
HD1

0 : (0, 1, ..., 1)B = 0 ;
p = 5, 7, 8 ; n = 20, 25, 40, 50, 100 .

D2. MLR system, cross-equation UL constraints
Model: (2.1) ;
HD2

0 : (3.1) ;
p = 11, 12, 13 ; K = 12, 13 ; r = 12, 13 ; c = 11, 12, 13 .

D3. MLR system, cross-equation constraints
Model: (2.1) ;
HD3

0 : bjj = b11 , j = 2 , ... , p andbkj = 0 , j 6= k , j, k = 1 , . . . , p ;
p = 3, 5 ; n = 25 .

D4. MLR system, non-linear constraints
Model: (2.1) withK = 2 ;
HD4

0 : b0j = γ(1− b1j) , j = 1 , ... , p , γ unknown;
p = 40 ; n = 60 .

10



Experiments D1 and D2 illustrate the UL case. D1 is modelled after the study in Attfield (1995)
whose purpose was to demonstrate the effectiveness of Bartlett adjustments. However, the example
analyzed there was restricted to a two-equations model. This experiment may be viewed as an
illustration of homogeneity tests in demand systems. D2 studies the size of Rao’sF test when (A.1)
is valid only asymptotically; in the subsequent tables, the latter test is denotedFRAO

asy . Experiments
D3 and D4 consider more general restrictions and are designed to assess the performance of the
bounds procedure. Experiment D3 focuses on general linear restrictions, including exclusion and
cross-equation equality constraints. Experiment D4 is modelled after multivariate CAPM tests [see
Stewart (1997)]. We considered 40 equations with 60 observations following the empirical example
analyzed in Stewart (1997).

For each model, a constant regressor was included and the other regressors were independently
drawn (once) from a normal distribution; the errors were independently generated asi.i.d. N(0, Σ)
with Σ = GG′ and the elements ofG drawn (once) from a normal distribution. The regression
coefficients are reported in Table 1. The power of the tests in (D1,n = 25, p = 8), and D3 were
investigated by simulating the model with the same parameter values except forb11.

The statistics examined are the relevant LR criteria defined by (3.4) and (4.2). To derive the
LR statistic in D4, the constrained MLE was numerically computed according to Shanken (1986).
For the purpose of the power comparisons conducted in D3 and D4, we performed: (i) the standard
asymptotic LR test (size corrected when needed, using an independent simulation), and (ii) the
parametric bootstrap test to which we refer as the ”Local” Monte Carlo (LMC) test. The latter
procedure is based on simulations that use a restricted ML estimator. The subscriptsasy, BMC,
LMC andPMC refer respectively to the standard asymptotic tests, the MC bounds tests, the LMC
test and the pivotal statistics-based Monte Carlo test. The BMC test performed in D3 is based on
the LR statistic which corresponds to the UL constraints setting all coefficients except the intercepts
to specific values. In the case of D4, the BMC test corresponds to the following UL restrictions:
b0j = γ(1 − b1j) , j = 1 , ... , p, γ known. In D1 we have also considered the Bartlett-corrected
LR test [Attfield (1995, Section 3.3)] which we denoteLRc. The MC tests were applied with 19
and 99 replications. We computed empirical rejection frequencies, based on a nominal size of 5%
and 1000 replications. All the experiments were conducted using Gauss-386i VM version 3.1. Note
here that the number of simulated samples used for the MC tests has no effect on size, but it may
affect power.

5.2 Results and discussion

The results of experiments D1-D3 are summarized in Tables 2 to 6. The results of experiment D4
are as follows. The observed size of the asymptotic test was 89.5%. In contrast, the LMC and BMC
tests show empirical type I error rates(.047 and.038) compatible with their nominal5% level. Our
results show the following.

5.2.1 Test sizes

First, it is evident that the asymptotic tests overreject substantially. Although this problem is well
documented, observe that in some cases empirical sizes ranged from 75% to 100%. Second, the
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TABLE 1. COEFFICIENTS FOR THE SIMULATION EXPERIMENTS

bkj =
{

.1 , j = 1 , ... , I[p/2]

.2, j = I[p/2] + 1 , ... , p
, k = 1 , ... , p− 1

D1. bpj =
∑p−1

k=1 bkj , j = 1 , ... , p ,

b0j =
{

1.2 , j = 1 , ... , I[p/2]
1.8, j = I[p/2] + 1 , ... , p

D2. The elements of the matricesR, B,C were selected (once)
independently from theN(0, 1) distribution

p = 3 p = 5

D3. B =




1.2 .8 −1.1
.1 0 0
0 .1 0
0 0 .1


 B =




1.2 .8 −1.1 1.9 −.2
.1 0 0 0 0
0 .1 0 0 0
0 0 .1 0 0
0 0 0 .1 0
0 0 0 0 .1




D4. γ = .009 andb1j , j = 1 , ... , p, drawn (once) asNID(0, .16)

TABLE 2. EMPIRICAL LEVELS OF VARIOUS TESTS: EXPERIMENT D1

p = 5 p = 7 p = 8
n LRasy LRc LRPMC LRasy LRc LRPMC LRasy LRc LRPMC

20 .295 .100 .050 .599 .250 .042 .760 .404 .051
25 .174 .075 .045 .384 .145 .036 .492 .190 .045
40 .130 .066 .052 .191 .068 .045 .230 .087 .049
50 .097 .058 .049 .138 .066 .041 .191 .073 .054
100 .070 .052 .050 .078 .051 .049 .096 .052 .053

TABLE 3. TEST POWERS: EXPERIMENT D1
n = 25, p = 8; H0 : b11 = .1

b11 .2 .4 .8 1.0 1.4
LRasy .055 .176 .822 .965 1.0

LRPMC (N = 19) .054 .165 .688 .881 .991
LRPMC (N = 99) .056 .173 .799 .950 .999
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TABLE 4. EMPIRICAL LEVELS OF VARIOUS TESTS: EXPERIMENT D2

( p,K, r, c) LRasy FRAO
asy LRPMC

13, 12, 12, 13 1.00 .198 .047
11, 12, 12, 11 1.00 .096 .054
12, 12, 12, 12 1.00 .114 .048
12, 13, 13, 12 1.00 .225 .038

TABLE 5. EMPIRICAL LEVELS OF VARIOUS TESTS: EXPERIMENT D3

p = 3 p = 5
LRasy LRLMC LRBMC LRasy LRLMC LRBMC

.122 .055 .036 .310 .044 .029

TABLE 6. TEST POWERS: EXPERIMENT D3
H0 : b11 = .1

N = 19 N = 99
p = 3

b11 .3 .5 .7 .9 1.0 .3 .5 .7 .9 1.0
LRasy .140 .522 .918 .995 1.0 .140 .522 .918 .995 1.0
LRLMC .137 .468 .849 .987 .991.135 .539 .912 .995 1.0
LRBMC .095 .404 .799 .963 .987.099 .441 .861 .986 .999

p = 5
b11 .3 .5 .7 .9 1.1 .3 .5 .7 .9 1.1
LRasy .128 .515 .904 .995 1.0 .128 .515 .904 .995 1.0
LRLMC .138 .467 .937 .967 1.0 .137 .537 .904 .994 1.0
LRBMC .120 .427 .792 .958 .995.110 .484 .877 .990 1.0

Bartlett correction, though providing some improvement, does not control the size in larger systems.
From the results of D2, we can see that the asymptoticF test - when applicable - performs better
than the standardχ2 test, but size correction is still needed. The size of thePMC test corresponds
closely to 5%. The levels of theBMC test are adequate in all experiments.

5.2.2 Test powers

Experiment D1 reveals that thePMC tests have good power (see Table 3) even withN as low as
19. WithN = 99, we do not observe any significant power loss for tests having comparable size,
although the power study focuses on the eight-equations model with just25 observations.LMC
tests provide substantial improvement over conventional asymptotics: the procedure corrects test
sizes with no substantial power loss. A striking observation in the case of D3 is that the conservative
bound provides conclusive results with high probability. Increasing the number of equations does
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not have a great effect on the relative performance of all MC methods proposed. An interesting
experiment that bears on this problem is reported in Cribari-Neto and Zarkos (1997) in connection
with MLR-based bootstrap tests for homogeneity and symmetry of demand. These authors find that
the standard bootstrap achieves size control at the expense of important power losses.

Although theLMC test appears superior, which is somewhat suspected given that the bound
is conservative by construction, this experiment shows that the bound has relatively good power.
Indeed, we emphasize that LMC and BMC tests should be viewed as complementary rather than
alternative procedures. As argued above, the bounds procedure is computationally inexpensive and
exact. In addition, whenever the bounds test reject, inference may be made without further appeal
to LMC tests. In this regard, our results illustrate the usefulness of the proposed bounds.

6 Conclusion

In this paper we have shown that the LR test on the coefficients of the MLR model is boundedly
pivotal under the null hypothesis. The bounds we have derived for general, possibly non-linear
hypotheses are exact in finite samples and may easily be implemented by simulation. The basic
results were stated in terms of arbitrary hypotheses in MLR contexts. No regularity condition is
imposed on the form of restrictions tested, which can be highly nonlinear and may not satisfy the
conditions usually required for deriving an asymptotic theory.

For the special case of uniform linear hypotheses, which include many types of restrictions
important in practice, we have also focused on special cases, namely uniform and general linear
hypotheses. In fact, in the uniform linear case, we have shown that the LR statistic is pivotal even
if the normality hypothesis is not imposed. This result has provided the foundations for the con-
struction of the proposed general bounds. We have reported the results of a Monte Carlo experiment
that covered uniform linear, cross-equation and non-linear restrictions. We have found that standard
asymptotic tests exhibit serious errors in level, particularly in larger systems; usual size correction
techniques (e.g. the Bartlett adjustment) may not be fully successful. In contrast, the bounds tests
we have proposed displayed excellent properties.

Finally, even though the finite-sample validity of the proposed Monte Carlo test procedures
only holds under parametric distributional assumptions on model disturbances, it is straightforward
to see that such tests will be asymptotically valid (in the usual sense as the sample size goes to
infinity) under much weaker distributional assumptions as soon as two conditions are met: (1)
the assumptions used to derive an asymptotic distribution include as special case the parametric
distributional assumptions used in performing the Monte Carlo tests (e.g., a Gaussian assumption);
(2) the asymptotic distribution of the test statistic does not involve unknown nuisance parameters
(e.g., it is a chi-square distribution with a known number of degrees of freedom). So there is typically
nothing to lose (and potentially much to gain in terms of finite-sample reliability) in applying a
finite-sample procedure of the type proposed here as opposed to only an asymptotic approximation.
For further discussion of this sort ofgeneric asymptotic validityof a finite-sample test, the reader
may consult Dufour and Kiviet (1998).
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A Appendix: Wilks’ and Hotelling’s null distributions

We restate here known finite sample distributional results [see Anderson (1984) or Rao (1973)]
pertaining to the LR criteria for testing uniform linear hypotheses in the context of the MLR model
(2.1) under (2.3). The first result characterizes the exact distribution of Wilks’ statistic.

Theorem A.1 DISTRIBUTION OF WILKS ’ STATISTIC UNDERGAUSSIAN MODELS. Under(2.1),
(2.2), (2.3) and(3.2), Wilks’ L statistic for testingH01 is distributed like the product ofp indepen-
dent beta variables with parameters(1

2(n− rX − p + i) , r
2) , i = 1, ... , p, whererX is the rank

of the regressor matrix andr is the rank of the matrixR.

This result has formally been derived for the case where the constraints take the special form
(3.2), although it is easy to see that it also holds under (3.1). For certain values ofr andc and
normal errors, the null distribution of the Wilks criterion reduces to theF distribution. For instance,
if min(r, c) ≤ 2, then (

ρτ − 2λ

rc

)
1− L1/τ

L1/τ
∼ F (rc , ρτ − 2λ) (A.1)

where

ρ =
n−K(c− r + 1)

2
, λ =

rc− 2
4

and

τ =
{

[(r2c2 − 4)/(r2 + c2 − 5)]1/2

1
, if r2 + c2 − 5 > 0
, otherwise

.

Further, the special caser = 1 leads to the Hotelling’sT 2 criterion which is a monotonic function of
L. If r > 2 andc > 2 , then the distributional result (A.1) holds asymptotically [Rao (1973, Chapter
8)]. Stewart (1997) provides an extensive discussion of these specialF tests; see also Shukur and
Edgerton (1994).

B Appendix: Monte Carlo tests

MC test procedures were originally suggested by Dwass (1957) and Barnard (1963). In the fol-
lowing, we briefly outline the methodology involved as it applies to the present context; for a more
detailed discussion, see Dufour (1995).

Consider first the UL test case. We focus on the statisticΛ = L−1, whereL is the Wilks cri-
terion, as defined in (3.4). LetΛ0 denote the observed test statistic. By Monte Carlo methods and
for a given numberN of replications, generateΛj , j = 1 , . . . , N independent realizations of
the statistic in question, under the null hypothesis. This may be conveniently implemented using
Corollaries3.2-3.3. While the level of the test is controlled irrespective of the number of replica-
tions, the statistic typically performs better in terms of power the larger the number of replications.
RankΛj , j = 0 , . . . , N in non-decreasing order and obtain the MCp-valuep̂N (Λ0 ) where

p̂N (x) =
NĜN (x) + 1

N + 1
, (B.2)
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with

ĜN (x) = 1
N

∑N
i=1 I[0,∞] (Λi − x), IA(z) =

{
1, if z ∈ A
0, if z /∈ A

. (B.3)

Then the test’s critical region corresponds to

p̂N (Λ0 ) ≤ α , 0 < α < 1. (B.4)

In the pivotal statistic case, the latter critical region is provably exact,i.e. P [p̂N (Λ0 ) ≤ α] ≤ α
with P [p̂N (Λ0 ) ≤ α] = α when there is an integerk such thatα = k/(N + 1) we have . Thus
p̂N (Λ0 ) provides an exactp−value. For example, forα = 0.05, the number of replications can be
as low asN = 19, although of course one could use a larger number[e.g., N = 49, 99, 299, 999].
Clearly, the fact that a small number of replications is sufficient to achieve the desired level does
not entail that a larger number of replications is not preferable: raising the value ofN will typically
increase power and decrease the sensitivity of inference to the randomization inherent to any MC
procedure.3 However (and somewhat surprisingly), our simulation results suggest that increasing
the number of replications only has a small effect on power at least for the cases considered.

We now turn to the case of theΛ∗ statistic defined by (4.2) for testing (4.1). Denote byθ
the vector of relevant nuisance parameters. From the observed data, compute: (i) the test statistic

which we will denoteΛ∗0, and (ii) a restricted consistent estimatorθ̂
0

n of θ [i.e., an estimator̂θ
0

n of θ

estimator such that the data generating process associated withθ = θ̂
0

n satisfiesH0, andθ̂
0

n
p→ θ as

n → ∞ underH0]. Using θ̂
0

n, generateN simulated samples and, from them,N simulated values

of the test statistic:Λ∗j , j = 0 , . . . , N . Then computêpN (Λ∗0|θ̂
0

n), wherep̂N (x|θ) refers to

p̂N (x) based on realizations ofΛ∗ generated givenθ = θ andp̂N (x) is defined in (B.2), replacing
Λj , j = 0 , . . . , N by Λ∗j in (B.3). A MC test may be based on the critical region

p̂N (T0|θ̂0

n) ≤ α , α ≤ 0 ≤ 1 .

This yields a parametric bootstrap or, in our notation an LMCp-value. Using the results from
Dufour (1995) on LMC tests, we have that underH0,

lim
n→∞

{
P [p̂N (Λ∗0|θ̂

0

n) ≤ α]− P [p̂N (Λ∗0|θ) ≤ α]
}

= 0 , (B.5)

which means that the LMC test has the correct level asymptotically (asn →∞). The latter limiting
result takes the number of simulated samples explicitly into account,i.e. does not depend onN →
∞. Finally, To obtain a BMC test, implement the PMC procedure based on realizations of the
bounding statistic. These realizations may be obtained applying Corollaries3.2-3.3, whereM0 is
chosen conformably withH∗∗

0 which should be constructed as outlined in Section 4.

3Under quite general conditions, using a randomized procedure based on a finite number of replicationsN induces
a power loss relative to the corresponding non-randomized procedure based on the analytical calculation of the relevant
critical values (which is typically infeasible). Power increases (often monotonically) with the number of replications
and converges to the power of the non-randomized procedure asN → ∞. For further discussion, see Dwass (1957),
Birnbaum (1974), J̈ockel (1986) and Dufour (1995).
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